小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點(diǎn)數(shù)記為x;小李后擲一枚骰子,向上的點(diǎn)數(shù)記為y,
(1)在直角坐標(biāo)系xOy中,以(x,y)為坐標(biāo)的點(diǎn)共有幾個(gè)?試求點(diǎn)(x,y)落在直線x+y=7上的概率;
(2)規(guī)定:若x+y≥10,則小王贏,若x+y≤4,則小李贏,其他情況不分輸贏.試問這個(gè)規(guī)定公平嗎?請(qǐng)說明理由.
解:(1)因?yàn)閤、y可取1、2、3、4、5、6,
故以(x,y)為坐標(biāo)的點(diǎn)共有36個(gè),
記“點(diǎn)(x,y)落在直線x+y=7上”為事件A,則事件A包含的點(diǎn)有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6個(gè),
所以事件A的概率P(A)=
(2)記“x+y≥10”為事件A1,“x+y≤4”為事件A2,用數(shù)對(duì)(x,y)表示x、y的取值,
則事件A1包含(4,6)、(5,5)、(5,6)、(6,4)、(6,5)、(6,6),共6個(gè)數(shù)對(duì);
事件A2包含(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1),共6個(gè)數(shù)對(duì),
由(1)知基本事件總數(shù)為36,
所以事件A1的概率P(A1)=,
事件A2的概率P(A2)=,
即小王和小李兩位同學(xué)贏的可能性是均等的,
所以這個(gè)規(guī)定是公平的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點(diǎn)數(shù)記為x;小李后擲一枚骰子,向上的點(diǎn)數(shù)記為y.
(1)在直角坐標(biāo)系xOy中,以(x,y)為坐標(biāo)的點(diǎn)共有幾個(gè)?求點(diǎn)(x,y)落在直線x+y=7上的概率;
(2)規(guī)定:若x+y≥10,則小王贏,若x+y≤4,則小李贏,其他情況不分輸贏.試問這個(gè)規(guī)定公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點(diǎn)數(shù)記為x;小李后擲一枚骰子,向上的點(diǎn)數(shù)記為y.
(1)在直角坐標(biāo)系xOy中,以(x,y)為坐標(biāo)的點(diǎn)共有幾個(gè)?求點(diǎn)(x,y)落在直線x+y=7上的概率;
(2)規(guī)定:若x+y≥10,則小王贏,若x+y≤4,則小李贏,其他情況不分輸贏.試問這個(gè)規(guī)定公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省平?jīng)鍪徐o寧縣華源中學(xué)高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點(diǎn)數(shù)記為x;小李后擲一枚骰子,向上的點(diǎn)數(shù)記為y.
(1)在直角坐標(biāo)系xOy中,以(x,y)為坐標(biāo)的點(diǎn)共有幾個(gè)?求點(diǎn)(x,y)落在直線x+y=7上的概率;
(2)規(guī)定:若x+y≥10,則小王贏,若x+y≤4,則小李贏,其他情況不分輸贏.試問這個(gè)規(guī)定公平嗎?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案