設(shè)定義在(0,+∞)上的函數(shù)f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x,求a,b的值.
(1) 2+b   (2) a=2,b=-1

解:(1)法一 由題知,f(x)=ax++b≥2+b,
其中當(dāng)且僅當(dāng)ax=1時(shí)等號(hào)成立,
即當(dāng)x=時(shí),f(x)取最小值為2+b.
法二 f(x)的導(dǎo)數(shù)f′(x)=a-=,
當(dāng)x>時(shí),f′(x)>0,f(x)在(,+∞)上遞增;
當(dāng)0<x<時(shí),f′(x)<0,f(x)在(0,)上遞減.
所以當(dāng)x=時(shí),f(x)取最小值為2+b.
(2) f′(x)=a-,
由題設(shè)知,f′(1)=a-=,
解得a=2或a=-(不合題意,舍去).
將a=2代入f(1)=a++b=,解得b=-1.
所以a=2,b=-1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)y=xlnx+1.
(1)求這個(gè)函數(shù)的導(dǎo)數(shù);
(2)求這個(gè)函數(shù)的圖象在點(diǎn)x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=xlnx,過(guò)點(diǎn)A 作函數(shù)y=f(x)圖象的切線,則切線的方程為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

要做一個(gè)底面為長(zhǎng)方形的帶蓋的箱子,其體積為72 cm3,其底面兩鄰
邊長(zhǎng)之比為1∶2,則它的長(zhǎng)為_(kāi)_____,寬為_(kāi)_____,高為_(kāi)_____時(shí),可使表面積最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)底為等邊三角形的直棱柱的體積為V,那么其表面積最小時(shí),底面邊
長(zhǎng)為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線y=-x3+3x2在點(diǎn)(1,2)處的切線方程為(  )
A.y=3x-1B.y=-3x+5
C.y=3x+5D.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若曲線yx2-1的一條切線平行于直線y=4x-3,則這條切線方程為_(kāi)____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)曲線y=eax在點(diǎn)(0,1)處的切線與直線x+2y+1=0垂直,則a=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案