如果方程表示焦點在軸上的橢圓,則實數(shù)的取值范圍是(    )
A.B.C.D.
D
本試題主要是考查了橢圓的方程的運用。因為方程表示焦點在軸上的橢圓,則>a+6>0,則實數(shù)的取值范圍是,選D.
解決該試題的關鍵是對于橢圓的定位,看分母哪個大,對應的軸在分子表示的那個軸上。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點,點是橢圓上異于的動點,直線分別交直線兩點.  
證明:以線段為直徑的圓恒過軸上的定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)設雙曲線的兩個焦點分別為,離心率為2.
(Ⅰ)求此雙曲線的漸近線的方程;
(Ⅱ)若分別為上的點,且,求線段的中點的軌跡方程,并說明軌跡是什么曲線;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的兩焦點為,點滿足,則的取值范圍為      ,直線與橢圓的公共點個數(shù)為     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(本題滿分14分)
已知橢圓=1(a>b>0)的左右頂點為,上下頂點為, 左右焦點為,若為等腰直角三角形(1)求橢圓的離心率(2)若的面積為6,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,點,動點滿足,則點的軌跡方程是  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F是橢圓(a>b>0)的左焦點, P是橢圓上的一點, PF⊥x軸, O
∥AB(O為原點), 則該橢圓的離心率是 (        )
 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)已知A、B是橢圓與坐標軸正半軸的兩交點,在第一象限的橢圓弧上求一點P,使四邊形OPAB的面積最大.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的兩個焦點為,且,弦AB過點,則△的周長為                                       (   )
A.10B.20 C.2D.

查看答案和解析>>

同步練習冊答案