【題目】為了解學(xué)生寒假閱讀名著的情況,一名教師對某班級的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:

本數(shù)
人數(shù)
性別

0

1

2

3

4

5

男生

0

1

4

3

2

2

女生

0

0

1

3

3

1

(I)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生閱讀名著本數(shù)之和為4的概率;
(II)若從閱讀名著不少于4本的學(xué)生中任選4人,設(shè)選到的男學(xué)生人數(shù)為 X,求隨機(jī)變量 X的分布列和數(shù)學(xué)期望;
(III)試判斷男學(xué)生閱讀名著本數(shù)的方差 與女學(xué)生閱讀名著本數(shù)的方差 的大。ㄖ恍鑼懗鼋Y(jié)論).

【答案】解:(I)全班有12個男生,8個女生,
所以男、女各選1人的方法數(shù)m=12×8=96
而這兩名學(xué)生閱讀名著本數(shù)之和為4的方法數(shù)n=1×3+4×1=7,
所以這兩名學(xué)生閱讀名著本數(shù)之和為4的概率為p=
(II)由已知隨機(jī)變量 X的可能的取值有0,1,2,3,4,
,

,

,
∴X的分布列為:

X

0

1

2

3

4

P

∴X的數(shù)學(xué)期望為
(III)
【解析】(I)全班有12個男生,8個女生,由此求出男、女各選1人的方法數(shù),再求出這兩名學(xué)生閱讀名著本數(shù)之和為4的方法數(shù),由此能求出這兩名學(xué)生閱讀名著本數(shù)之和為4的概率.(II)由已知隨機(jī)變量 X的可能的取值有0,1,2,3,4,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.(III)利用調(diào)查表能判斷男學(xué)生閱讀名著本數(shù)的方差 與女學(xué)生閱讀名著本數(shù)的方差 的大小.
【考點(diǎn)精析】本題主要考查了極差、方差與標(biāo)準(zhǔn)差和離散型隨機(jī)變量及其分布列的相關(guān)知識點(diǎn),需要掌握標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實(shí)際問題時,多采用標(biāo)準(zhǔn)差;在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:

打算觀看

不打算觀看

女生

20

b

男生

c

25

(1)求出表中數(shù)據(jù)b,c;

(2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);

(3)為了計(jì)算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=sin( x﹣ )﹣2cos2 x+1.
(1)求f(x)的最小正周期;
(2)若函數(shù)y=f(x)與y=g(x)的圖象關(guān)于直線x=1對稱,求當(dāng)x∈[0, ]時,y=g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個命題:

①若ab≤0,則a≤0b≤0;②若a>b,則am2>bm2;③在ABC中,若sinA=sinB,則AB;④在一元二次方程ax2bxc=0中,若b2-4ac<0,則方程有實(shí)數(shù)根.其中原命題、逆命題、否命題、逆否命題全都是真命題的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex , g(x)=kx+1.
(I)求函數(shù)y=f(x)﹣(x+1)的最小值;
(II)證明:當(dāng)k>1時,存在x0>0,使對于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在實(shí)數(shù)m使對任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐曲線 E:
(I)求曲線 E的離心率及標(biāo)準(zhǔn)方程;
(II)設(shè) M(x0 , y0)是曲線 E上的任意一點(diǎn),過原點(diǎn)作⊙M:(x﹣x02+(y﹣y02=8的兩條切線,分別交曲線 E于點(diǎn) P、Q.
①若直線OP,OQ的斜率存在分別為k1 , k2 , 求證:k1k2=﹣
②試問OP2+OQ2是否為定值.若是求出這個定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)證明:;

(2)若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m、n∈R+ , f(x)=|x+m|+|2x﹣n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+ )的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若(2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.求:

(1)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|;

(2)(a0+a2+a4)2-(a1+a2+a3)2.

查看答案和解析>>

同步練習(xí)冊答案