【題目】已知橢圓的右焦點(diǎn)F與拋物線焦點(diǎn)重合,且橢圓的離心率為,過軸正半軸一點(diǎn) 且斜率為的直線交橢圓于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在實(shí)數(shù)使以線段為直徑的圓經(jīng)過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在說明理由.

【答案】(1);(2)存在,.

【解析】

(1)根據(jù)拋物線焦點(diǎn)可得,又根據(jù)離心率可求,利用,即可寫出橢圓的方程

(2)由題意可設(shè)直線的方程為,聯(lián)立方程組,消元得一元二次方程,寫出,利用根與系數(shù)的關(guān)系可求存在m.

解:(1)拋物線的焦點(diǎn)是

,又橢圓的離心率為,即

,,則

故橢圓的方程為.

(2)由題意得直線的方程為

消去.

,解得.

,.

設(shè),則,.

.

,,

若存在使以線段為直徑的圓經(jīng)過點(diǎn),則必有,即,

解得.又.

即存在使以線段為直徑的圓經(jīng)過點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若時(shí),對(duì)任意的都成立,求實(shí)數(shù)的取值范圍;

2)求關(guān)于的不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為一個(gè)正方體與一個(gè)半球構(gòu)成的組合體,半球的底面圓與該正方體的上底面的四邊相切, 與正方形的中心重合.將此組合體重新置于一個(gè)球中(球未畫出),使該正方體的下底面的頂點(diǎn)均落在球的表面上,半球與球內(nèi)切,設(shè)切點(diǎn)為,若正四棱錐的表面積為,則球的表面積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】同時(shí)拋擲1角、5角和1元的三枚硬幣,計(jì)算:

(1)恰有一枚出現(xiàn)正面的概率;

(2)至少有兩枚出現(xiàn)正面的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左右頂點(diǎn)分別是,離心率為,設(shè)點(diǎn),連接交橢圓于點(diǎn),坐標(biāo)原點(diǎn)是

(1)證明: ;

2設(shè)三角形的面積為,四邊形的面積為, 的最小值為1,求橢圓的標(biāo)準(zhǔn)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是.

(Ⅰ)求的值;

(Ⅱ)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.求在區(qū)間內(nèi)任取2個(gè)實(shí)數(shù),,求事件恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】研究變量得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論

①殘差平方和越小的模型,擬合的效果越好;

②用相關(guān)指數(shù)來刻畫回歸效果,越小說明擬合效果越好;

③線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn);

④若變量之間的相關(guān)系數(shù)為,則變量之間的負(fù)相關(guān)很強(qiáng).

以上正確說法的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln x-.

(1)試討論f(x)在定義域上的單調(diào)性;

(2)若f(x)在[1,e]上的最小值為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究一種新藥的療效,選100名患者隨機(jī)分成兩組,每組各50名,一組服藥,另一組不服藥.一段時(shí)間后,記錄了兩組患者的生理指標(biāo)xy的數(shù)據(jù),并制成下圖,其中“*”表示服藥者,“+”表示未服藥者.

(1)從服藥的50名患者中隨機(jī)選出一人,求此人指標(biāo)x的值小于1.7的概率;

(2)試判斷這100名患者中服藥者指標(biāo)y數(shù)據(jù)的方差與未服藥者指標(biāo)y數(shù)據(jù)的方差的大。(只需寫出結(jié)論)

(3)若指標(biāo)x小于1.7且指標(biāo)y大于60就說總生理指標(biāo)正常(例如圖中B、D兩名患者的總生理指標(biāo)正常),根據(jù)上圖,完成下面列聯(lián)表,并判斷能否有95%的把握認(rèn)為總生理指標(biāo)正常與是否服藥有關(guān),說明理由;

總生理指標(biāo)正常

總生理指標(biāo)不正常

總計(jì)

服藥

不服藥

總計(jì)

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:

查看答案和解析>>

同步練習(xí)冊(cè)答案