(12分) 22.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,
底面ABCD,PA=AD=DC=AB=1,M是PB的中點(diǎn)
(Ⅰ)證明:面PAD⊥面PCD;
(Ⅱ)求異面直線CM與AD所成角的正切值;
(Ⅲ)求面MAC與面BAC所成二面角的正切值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分) 已知函數(shù).
(Ⅰ) 求f 1(x);
(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;
(Ⅲ) 設(shè)bn=an+12+an+22+¼+a2n+12,是否存在最小的正整數(shù)k,使對于任意nÎN+有bn<成立. 若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
. (本題滿分12分)已知函數(shù).(Ⅰ) 求f –1(x);(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(n??N+),求{an}的通項(xiàng)公式an;(Ⅲ) 設(shè)bn=an+12+an+22+??+a2n+12,是否存在最小的正整數(shù)k,使對于任意n??N+有bn<成立. 若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三第二次綜合考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)已知某單位有50名職工,現(xiàn)要從中抽取10名職工,將全體職工隨機(jī)按1~50編號(hào),并按編號(hào)順序平均分成10組,按各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣.
(1)若第5組抽出的號(hào)碼為22,寫出所有被抽出職工的號(hào)碼;
(2)分別統(tǒng)計(jì)這10名職工的體重(單位:公斤),獲得體重?cái)?shù)據(jù)的莖葉圖如圖所示,求該樣本的方差;(溫馨提示:答題前請仔細(xì)閱讀卷首所給的公式)
(3)在(2)的條件下,從這10名職工中隨機(jī)抽取兩名體重不輕于73公斤(≥73公斤)的職工,求體重為76公斤的職工被抽取到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江西省高一下學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分12分)
已知{an}是等差數(shù)列,其中a2=22,a7=7
(1)求{an}的通項(xiàng);
(2)求a2+a4+a6+……+a20的值;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為S n,求S n的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年云南省江高二3月月考數(shù)學(xué)文卷 題型:解答題
(
請考生在第22~23兩題中任選一題做答,如果多做,則按所做的第一題記分。
22.(本小題滿分12分)
已知二次函數(shù)f(x)滿足:①在x=1時(shí)有極值;②圖象過點(diǎn)(0,-3),且在該點(diǎn)處的切線與直線2x+y=0平行.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com