【題目】已知滿足.
(1)求取到最值時(shí)的最優(yōu)解;
(2)求的取值范圍;
(3)若恒成立,求的取值范圍.
【答案】(1)C(3,2)和B(2,4)(2) (3)
【解析】試題分析:(1)畫出可行域,找出直線交點(diǎn)坐標(biāo),移動(dòng)目標(biāo)函數(shù),找到最優(yōu)解(2)目標(biāo)函數(shù)表示(x,y)與(2,-1)間斜率;(3)由于直線恒過(guò)定點(diǎn)(0,3)時(shí), 恒成立.
試題解析:
(1)由圖可知:
直線與直線交點(diǎn)A(1,1);直線與直線交點(diǎn)B(2,4);
直線與直線交點(diǎn)C(3,2);
目標(biāo)函數(shù)在C(3,2)點(diǎn)取到最小值,B(2,4)點(diǎn)取到最大值
取到最值時(shí)的最優(yōu)解是C(3,2)和B(2,4)
(2)目標(biāo)函數(shù),由圖可知:
.
(3)由于直線恒過(guò)定點(diǎn)(0,3)時(shí), 恒成立
,或由題意可知, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有以下三個(gè)案例:
案例一:從同一批次同類型號(hào)的10袋牛奶中抽取3袋檢測(cè)其三聚氰胺含量;
案例二:某公司有員工800人:其中高級(jí)職稱的160人,中級(jí)職稱的320人,初級(jí)職稱200人,其余人員120人.從中抽取容量為40的樣本,了解該公司職工收入情況;
案例三:從某校1000名學(xué)生中抽10人參加主題為“學(xué)雷鋒,樹新風(fēng)”的志愿者活動(dòng).
(1)你認(rèn)為這些案例應(yīng)采用怎樣的抽樣方式較為合適?
(2)在你使用的分層抽樣案例中寫出每層抽樣的人數(shù);
(3)在你使用的系統(tǒng)抽樣案例中按以下規(guī)定取得樣本編號(hào):如果在起始組中隨機(jī)抽取的碼為(編號(hào)從0開始),那么第組(組號(hào)從0開始,)抽取的號(hào)碼的百位數(shù)為組號(hào),后兩位數(shù)為的后兩位數(shù).若,試求出及時(shí)所抽取的樣本編號(hào).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的方程為3x+4y﹣12=0,求直線l'的方程,使得:
(1)l'與l平行,且過(guò)點(diǎn)(﹣1,3);
(2)l'與l垂直,且l'與兩軸圍成的三角形面積為4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知底面,異面直線和所成角等于.
(1)求證: 平面平面;
(2)求直線和平面所成角的正弦值;
(3) 在棱上是否存在一點(diǎn),使得平面與平面所成銳二面角的正切值為?若存在,指出點(diǎn)在棱上的位置,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是指大氣中直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物,對(duì)人體健康和大氣環(huán)境質(zhì)量的影響很大.我國(guó)標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值.即日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米75微克/立方米之間空氣質(zhì)量為二級(jí);75微克/立方米以上空氣質(zhì)量為超標(biāo).
某市環(huán)保局從360天的市區(qū)監(jiān)測(cè)數(shù)據(jù)中統(tǒng)計(jì)了1月至10月的每月的平均值(單位:微克/立方米),如下表所示.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
月均值 | 32 | 28 | 25 | 31 | 34 | 33 | 45 | 44 | 63 | 68 |
(1)從5月到10月的這6個(gè)數(shù)據(jù)中任取2個(gè)數(shù)值,求這個(gè)2個(gè)數(shù)值均為二級(jí)的概率;
(2)求月均值關(guān)于月份的回歸直線方程,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求f(x)> 在x∈[0,π]上的解集;
(2)設(shè)g(x)=2 cos2x+f(x),g(α)= + ,α∈( , ),求sin2α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}的公比為q(q≠0),其前項(xiàng)和為Sn , 若S3 , S9 , S6成等差數(shù)列,則q3= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}為等比數(shù)列,數(shù)列{bn}滿足bn=na1+(n﹣1)a2+…+2an﹣1+an , n∈N* , 已知b1=m, ,其中m≠0.
(1)求數(shù)列{an}的首項(xiàng)和公比;
(2)當(dāng)m=1時(shí),求bn;
(3)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若對(duì)于任意的正整數(shù)n,都有Sn∈[1,3],求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,g(x)=x2+2mx+
(1)用定義法證明f(x)在R上是增函數(shù);
(2)求出所有滿足不等式f(2a﹣a2)+f(3)>0的實(shí)數(shù)a構(gòu)成的集合;
(3)對(duì)任意的實(shí)數(shù)x1∈[﹣1,1],都存在一個(gè)實(shí)數(shù)x2∈[﹣1,1],使得f(x1)=g(x2),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com