方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有
62
62
條.
分析:將方程轉(zhuǎn)化為拋物線形式,然后利用排列組合的知識(shí)進(jìn)行求解.
解答:解:當(dāng)方程表示拋物線時(shí),有ab≠0,故該方程等價(jià)為y=
b2
a
x+
c
a
,
①若c=0,從{-3,-2,1,2,3},中任取2個(gè)數(shù)作為a,b的值,有A
 
2
5
=20
種不同的方法,
當(dāng)a一定,b的值互為相反數(shù)時(shí),對(duì)應(yīng)的拋物線相同,這樣的拋物線共有4×3=12條,重復(fù)6條,此時(shí)滿足條件的拋物線有20-6=14條.
②當(dāng)c≠0時(shí),從{-3,-2,1,2,3},中任取3個(gè)數(shù)作為a,b,c的值,有A
 
3
5
=60
種不同的方法,
當(dāng)a,c一定,b的值互為相反數(shù)時(shí),對(duì)應(yīng)的拋物線相同,這樣的拋物線共有4A
 
2
3
=24
,重復(fù)12條,此時(shí)滿足條件的拋物線有60-12=48條.
綜上滿足條件的拋物線共有14+48=62條.
故答案為:62.
點(diǎn)評(píng):本題主要考查排列組合知識(shí),以及分類討論思想,利用正難則反的思想是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)方程ay=b2x2+c中的a,b,c∈{-2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川 題型:單選題

方程ay=b2x2+c中的a,b,c∈{-2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有(  )
A.28條B.32條C.36條D.48條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省青島二中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有( )
A.60條
B.62條
C.71條
D.80條

查看答案和解析>>

同步練習(xí)冊(cè)答案