在實數(shù)的原有運算法則下,我們定義新運算“”為:當(dāng)時,;當(dāng)時,.則函數(shù)的最大值等于(上式中“· ”和“-”仍為通常的乘法和減法)

A.              B.1                C.6                D.12

 

【答案】

C

【解析】

試題分析:當(dāng),,當(dāng),的最大值為6

考點:信息給予題與分段函數(shù)求最值

點評:正確的讀取套用已知中的計算信息是求解本題的前提條件,由函數(shù)定義域需要將函數(shù)轉(zhuǎn)化為分段函數(shù)再求其最值

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)的原有運算法則中,定義新運算a?b=a-2b,則|x?(1-x)|+|(1-x)?x|>3的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)的原有運算法則中,我們補充定義新運算“⊕”:當(dāng)a≥b時,a⊕b=a;當(dāng)a<b時,a⊕b=b2. 則函數(shù)f(x)=(1⊕x)•x-(2⊕x),x∈[-2,2]的最大值等于
6
6
(其中“•”和“-”仍為通常的乘法和減法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)的原有運算法則中,我們補充定義新運算“⊕”:當(dāng) a≥b時,a⊕b=a;當(dāng)a<b時,a⊕b=b2,函數(shù)f(x)=(1⊕x)•x(其中“•”仍為通常的乘法),則函數(shù)f(x)在[0,2]上的值域為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)的原有運算法則下,我們定義新運算“⊕”為:當(dāng)a≥b時,a⊕b=a;當(dāng)a<b時,a⊕b=b2.則函數(shù)f(x)=(1⊕x)x-(2⊕x)(其中x∈[-2,2])的最大值等于(上式中“•”和“-”仍為通常的乘法和減法)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)在實數(shù)的原有運算法則中,定義新運算a?b=3a-b,則|x?(4-x)|+|(1-x)?x|>8的解集為
{x|x<-
1
8
,x>
15
8
}
{x|x<-
1
8
,x>
15
8
}

查看答案和解析>>

同步練習(xí)冊答案