【題目】已知橢圓C: =1(a>b>0)的左、右焦點分別為F1 , F2 , 直線l經(jīng)過F2且交橢圓C于A,B兩點(如圖),△ABF1的周長為4 ,原點O到直線l的最大距離為1.
(1)求橢圓C的標準方程;
(2)過F2作弦AB的垂線交橢圓C于M,N兩點,求四邊形AMBN面積最小時直線l的方程.
【答案】
(1)解:由題意知, ,c=1,
∴ ,
又∵a2=b2+c2,∴b=1,
∴橢圓C的標準方程為 ;
(2)解:當直線AB的斜率不存在時,
有 , ,∴ ;
當直線AB的斜率為0時, ,∴ ;
當直線AB的斜率存在且不為0時,
設直線AB的方程為y=k(x﹣1),則直線MN的方程為 ,
聯(lián)立 得:(2k2+1)x2﹣4k2x+2k2﹣2=0.
設A(x1,y1),B(x2,y2),
則 ,
∴|AB|= = = .
同理|MN|= ,
∴ |AB||MN|= ,
令t=k2+1(t≥1), ,
當 .即k2+1=2,即k=±1時, .
此時設直線AB的方程為y=±(x﹣1)
【解析】(1)由題意可得a,c的值,由隱含條件求得b的值,則橢圓方程可求;(2)分類求出直線AB的斜率不存在、斜率為0時的四邊形AMBN面積,在設出斜率存在且不為0時的直線方程,聯(lián)立直線方程和橢圓方程利用弦長公式求得|AB|、|MN|的長度,代入四邊形面積公式,換元后利用配方法求得最值,同時得到邊形AMBN面積最小時直線l的方程.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,扇形,圓心角的大小等于,半徑為2,在半徑上有一動點,過點作平行于的直線交弧于點.
(1)若是半徑的中點,求線段的大。
(2)設,求面積的最大值及此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
① “若,則有實根”的逆否命題為真命題;
②命題“”為真命題的一個充分不必要條件是;
③命題“,使得”的否定是真命題;
④命題函數(shù)為偶函數(shù),命題函數(shù)在上為增函數(shù),
則為真命題.
其中,正確的命題是( )
A. ①② B. ①③ C. ②③ D. ③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A.數(shù)據(jù)4、6、6、7、9、4的眾數(shù)是4
B.一組數(shù)據(jù)的標準差是這組數(shù)據(jù)的方差的平方
C.數(shù)據(jù)3,5,7,9的標準差是數(shù)據(jù)6、10、14、18的標準差的一半
D.頻率分布直方圖中各小長方形的面積等于相應各組的頻數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設曲線上一點的橫坐標為,過的直線交于另一點,交軸于點,過點作的垂線交于另一點.若是的切線,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 的定義域為A.
(1)求A;
(2)已知k>0,集合B={x| },且A∩B≠,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com