給出下列命題:
①函數(shù)f(x)=4cos(2x+
π
3
)
的一條對稱軸是直線x=-
12

②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域?yàn)閇-1,
2
2
]
;
③若α,β均為第一象限角,且α>β,則sinα>sinβ.
其中真命題的個數(shù)為( 。
A、0B、1C、2D、3
分析:①函數(shù) y=2sin(2x+
π
3
)
有一條對稱軸方程是 x=-
12
,由正弦函數(shù)的性質(zhì)直接求出對稱軸方程比較即可;
②f(x)=min{sinx,cosx}知f(x)為正弦余弦的最小值,通過函數(shù)圖象判斷.
③根據(jù)正弦函數(shù)在第一象限的單調(diào)性直接判斷.
解答:解:①函數(shù) y=2sin(2x+
π
3
)
有一條對稱軸方程是 x=-
12
是正確命題,令 2x-
π
3
=kπ+
π
2
,解得 2x+
π
3
=kπ+
π
2
,k∈Z
,當(dāng)k=-1時即得;

②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域?yàn)?[-1,
2
2
]
;
根據(jù)正弦函數(shù)余弦函數(shù)圖象易知,兩者最小值為-1,最小值中最大為
2
2

故正確
③若α,β均為第一象限角,且α>β,則sinα<sinβ.
因?yàn)榈谝幌笙拚液瘮?shù)不具有單調(diào)性,顯然不正確.
故選C.
點(diǎn)評:本題考查余弦函數(shù)的對稱性,以及余弦函數(shù)的圖象.通過對三個選項(xiàng)的分析分別判斷,本題為中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3a-1)x-2  x<1
logax         x≥1
,現(xiàn)給出下列命題:
①函數(shù)f(x)的圖象可以是一條連續(xù)不斷的曲線;
②能找到一個非零實(shí)數(shù)a,使得函數(shù)f (x)在R上是增函數(shù);
③a>1時函數(shù)y=f (|x|) 有最小值-2.
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的“l(fā)高調(diào)函數(shù)”.現(xiàn)給出下列命題:
①函數(shù)f(x)=2x為R上的“1高調(diào)函數(shù)”;
②函數(shù)f(x)=sin2x為R上的“A高調(diào)函數(shù)”;
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上“m高調(diào)函數(shù)”,那么實(shí)數(shù)m的取值范圍是[2,+∞);
其中正確的命題是
①②③
①②③
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=sin|x|不是周期函數(shù);        ②函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
③函數(shù)y=|cos2x+
1
2
|
的周期是
π
2
;    ④函數(shù)y=sin(x+
2
)
是偶函數(shù).
其中正確的命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=cos(
2
3
x+
π
2
)
是奇函數(shù);②函數(shù)y=sinx+cosx的最大值為
3
2
;
③函數(shù)y=tanx在第一象限內(nèi)是增函數(shù);
④函數(shù)y=sin(2x+
π
2
)
的圖象關(guān)于直線x=
π
12
成軸對稱圖形.
其中正確的命題序號是

查看答案和解析>>

同步練習(xí)冊答案