過橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)在軸上,且使得為的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”.
(1)求橢圓的“左特征點(diǎn)”的坐標(biāo);
(2)試根據(jù)(1)中的結(jié)論猜測:橢圓的“左特征點(diǎn)”是一個(gè)怎樣的點(diǎn)?
并證明你的結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣西柳鐵一中高三下學(xué)期模擬考試(二)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知離心率為的橢圓上的點(diǎn)到左焦點(diǎn)的最長距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)在軸上,且使得為的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西桂林十八中高三第二次月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分12分)已知離心率為的橢圓上的點(diǎn)到
左焦點(diǎn)的最長距離為
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)在軸上,且使得為的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣西桂林十八中2011-2012學(xué)年高三第二次月考試題數(shù)學(xué)文 題型:解答題
已知離心率為的橢圓上的點(diǎn)到左焦點(diǎn)的最長距離為.
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)在軸上,且使得為的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣西桂林十八中2011-2012學(xué)年高三第二次月考試題數(shù)學(xué)理 題型:解答題
已知離心率為的橢圓上的點(diǎn)到左焦點(diǎn)的最長距離為
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)在軸上,且使得為的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com