(1)當(dāng)k=1時(shí),求M的值;
(2)求M的最小值及相應(yīng)的k的值.
(文)設(shè)數(shù)列{an}的首項(xiàng)a1=a(a∈R),且an+1=n=1,2,3,….
(1)若0<a<1,求a2、a3、a4、a5;
(2)若0<an<4,證明0<an+1<4;
(3)若0<a≤2,求所有的正整數(shù)k,使得對于任意n∈N*,均有an+k=an成立.
答案:(理)解:(1)顯然an=2n-1,其中1≤n≤20.
當(dāng)k=1時(shí),bn=.
所以,
.
(2)M=
=(40-k-2k)+(220+k-220-k)
=.
當(dāng)2k=,即k=10時(shí),M=.
所以M的最小值為,此時(shí)k=10.
(文)(1)解:因?yàn)閍1=a∈(0,1),所以a2=-a1+4=-a+4,且a2∈(3,4).所以a3=a2-3=-a+1,且a3∈(0,1).所以a4=-a3+4=a+3,且a4∈(3,4).所以a5=a4-3=a.
(2)證明:①當(dāng)0<an≤3時(shí),an+1=-an+4,所以1≤an+1<4.
②當(dāng)3<an<4時(shí),an+1=an-3,所以0<an+1<1.綜上,0<an<4時(shí),0<an+1<4.
(3)解:①若0<a<1,由(1),知a5=a1,所以k=4;因此,當(dāng)k=4m(m∈N*)時(shí),對所有的n∈N*,an+k=an成立.
②若1≤a<2,則a2=-a+4,且a2∈(2,3],a3=-a2+4=-(-a+4)+4=a=a1,所以k=2;因此,當(dāng)k=2m(m∈N*)時(shí),對所有的n∈N*,an+k=an成立.
③若a=2,則a2=a3=a4=…,所以k=1.因此,當(dāng)k=m(m∈N*)時(shí),對所有的n∈N*,an+k=an成立.
綜上,若0<a<1,則k=4m;若1≤a<2,則k=2m;若a=2,則k=m(m∈N*).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
3 |
1 |
2 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
π |
2 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年陜西卷理)
設(shè)集合S={A0,A1,A2,A3},在S上定義運(yùn)算為:AiAj=Ak,其中k為I+j被4除的余數(shù),i、j=0,1,2,3.滿足關(guān)系式=(xx)A2=A0的x(x∈S)的個(gè)數(shù)為
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(04年浙江卷理)如圖,△OBC的三個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P1為線段BC的中點(diǎn),P2為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對于每一個(gè)正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),an=yn+yn+1+yn+2.
(1)求a1,a2,a3及an;
(2)證明,nÎN*;
(3)若記bn=y4n+4-y4n,nÎN*,證明{bn}是等比數(shù)列。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com