過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn)F(-c,0)作圓x2+y2=a2的切線,切點(diǎn)為E,延長FE交拋物線y2=4cx于點(diǎn)P,O為原點(diǎn),若|FE|=|EP|,則雙曲線離心率為(  )
A、
1+
5
2
B、
1+
3
2
C、
4
2
-2
7
D、
4
2
+2
7
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:雙曲線的右焦點(diǎn)的坐標(biāo)為(c,0),利用O為FF'的中點(diǎn),E為FP的中點(diǎn),可得OE為△PFF'的中位線,從而可求|PF|,再設(shè)P(x,y) 過點(diǎn)F作x軸的垂線,由勾股定理得出關(guān)于a,c的關(guān)系式,最后即可求得離心率.
解答: 解:設(shè)雙曲線的右焦點(diǎn)為F',則F'的坐標(biāo)為(c,0)
因?yàn)閽佄锞為y2=4cx,所以F'為拋物線的焦點(diǎn)
因?yàn)镺為FF'的中點(diǎn),E為FP的中點(diǎn),所以O(shè)E為△PFF'的中位線,
所以O(shè)E∥PF'
因?yàn)閨OE|=a,所以|PF'|=2a
又PF'⊥PF,|FF'|=2c 所以|PF|=2b
設(shè)P(x,y),則由拋物線的定義可得x+c=2a,
所以x=2a-c
過點(diǎn)F作x軸的垂線,點(diǎn)P到該垂線的距離為2a
由勾股定理 y2+4a2=4b2,即4c(2a-c)+4a2=4(c2-a2
得e2-e-1=0,
∴e=
1+
5
2

故選:A.
點(diǎn)評(píng):本題主要考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,考查拋物線的定義,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在(0,+∞)內(nèi)為增函數(shù)的是( 。
A、sin2x
B、x+sinx
C、x3-x
D、-x+ln(1+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
y2
3
-x2=1與拋物線x2=ay有相同的焦點(diǎn)F,O為原點(diǎn),點(diǎn)P是拋物線準(zhǔn)線上一動(dòng)點(diǎn),點(diǎn)A在拋物線上,且|AF|=4,則|PA|+|PO|的最小值為( 。
A、2
13
B、4
2
C、3
13
D、4
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(x+3)•f(x)=-1,f(-1)=2,則f(2008)=( 。
A、0.5B、0C、2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線C1:y2=4x的焦點(diǎn)F恰好是雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn),且C1與C2交點(diǎn)的連線過點(diǎn)F,則雙曲線C2的離心率為( 。
A、
2
+1
B、2
2
-1
C、3+2
2
D、
6
+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式組
x≤1
y≤3
λx-y+2λ-2≥0
表示的平面區(qū)域經(jīng)過四個(gè)象限,則實(shí)數(shù)λ的取值范圍是(  )
A、(-∞,2)
B、[-1,1]
C、[-1,2)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2-8n,令bn=|an|.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=-x3+x2+2ax.
(1)若f(x)在區(qū)間(
3
4
,+∞)上存在單調(diào)遞增區(qū)間,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)g(x)=f(x)-2ax+a有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年男足世界杯在巴西舉行,為了爭奪最后一個(gè)小組賽參賽名額,甲、乙、丙三支國家隊(duì)要進(jìn)行比賽,根據(jù)規(guī)則:每兩支隊(duì)比賽一場,共賽三場;每場比賽勝者得3分,負(fù)者得0分,沒有平局,獲得第一名的隊(duì)伍將奪得這個(gè)參賽名額.甲勝乙的概率為
2
3
,甲勝丙的概率為
1
4
,乙勝丙的概率為
1
5

(1)求甲獲第一名且丙獲第二名的概率:
(2)設(shè)在該次比賽中,丙得分為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案