已知向量數(shù)學(xué)公式,數(shù)學(xué)公式,設(shè)p為“數(shù)學(xué)公式”q為“|f(x)-m|<3”.若p為q的充分條件,求實數(shù)m的取值范圍.

解:∵=,
p:當(dāng)時,,∴,
q:又|f(x)-m|<3,∴m-3<f(x)<m+3,
若p為q的充分條件,則 ,

∴實數(shù)m的取值范圍是(-2,3-).
分析:利用向量的數(shù)量積、三角函數(shù)的和差、倍角公式及單調(diào)性、充分條件即可得出.
點評:熟練掌握向量的數(shù)量積、充分條件、三角函數(shù)的和差倍角公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m1
=(0,x),
n1
=(1,1),
m2
=(x,0),
n2
=(y2,1)(其中x,y是實數(shù)),又設(shè)向量
m
=
m1
2
n2
,
n
=
m2
-
2
n1
,且
m
n
,點P(x,y)的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)曲線C與y軸的正半軸的交點為M,過點M作一條直線l與曲線C交于另一點N,當(dāng)|MN|=
4
3
2
時,求直線 l 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=tan(3x-
π
2
)
的最小正周期是
π
3

②角α終邊上一點P(-3a,4a),且a≠0,那么cosα=-
3
5

③函數(shù)y=cos(2x-
π
3
)
的圖象的一個對稱中心是(-
π
12
,0)

④已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4).若λ為實數(shù),且(
a
b
)∥
c
,則λ=2
⑤設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時,f(x)=2x2-x,則f(1)=-3
其中正確的個數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知動圓過定點P(0,1),且與定直線y=-1相切.
(1)求動圓圓心的軌跡M的方程;
(2)設(shè)過點Q(0,-1)且以
a
=(-1,-k)
為方向向量的直線l與軌跡M相交于A、B兩點.若∠APB為鈍角,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省武漢市華中師大一附中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知向量,,設(shè)p為“”q為“|f(x)-m|<3”.若p為q的充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案