【題目】設(shè)函數(shù)f(x)=x3+ ,x∈[0,1],證明:
(1)f(x)≥1﹣x+x2
(2)<f(x)≤

【答案】
(1)

證明:因為f(x)=x3+ ,x∈[0,1],

且1﹣x+x2﹣x3= ,

所以

所以1﹣x+x2﹣x3 ,

即f(x)≥1﹣x+x2;


(2)

證明:因為0≤x≤1,所以x3≤x,

所以f(x)=x3+ ≤x+ =x+ + = + ;

由(1)得,f(x)≥1﹣x+x2= + ,

且f( )= + = ,

所以f(x)> ;

綜上, <f(x)≤


【解析】(1)根據(jù)題意,1﹣x+x2﹣x3= ,利用放縮法得 ,即可證明結(jié)論成立;(2)利用0≤x≤1時x3≤x,證明f(x)≤ ,再利用配方法證明f(x)≥ ,結(jié)合函數(shù)的最小值得出f(x)> ,即證結(jié)論成立.本題主要考查了函數(shù)的單調(diào)性與最值,分段函數(shù)等基礎(chǔ)知識,也考查了推理與論證,分析問題與解決問題的能力,是綜合性題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面平面,四邊形是全等的等腰梯形,其中,且,點的中點,點的中點.

(I)請在圖中所給的點中找出兩個點,使得這兩個點所在直線與平面垂直,并給出證明;

(II)求二面角的余弦值;

(III)在線段上是否存在點,使得平面?如果存在,求出的長度,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)同時滿足以下三個條件:

①對任意的,總有;

;

③若,則有成立,則稱友誼函數(shù)”.

)若已知友誼函數(shù),求的值.

)分別判斷函數(shù)在區(qū)間上是否為友誼函數(shù),并給出理由.

)已知友誼函數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系內(nèi),已知點A(1,0,B(-1,0),圓的方程為,點為圓上的動點.

(1)求過點的圓的切線方程.

(2)的最大值及此時對應的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設(shè)拋物線y2=2px(p>0)的焦點為F,拋物線上的點A到y(tǒng)軸的距離等于|AF|﹣1,

(1)求p的值;
(2)若直線AF交拋物線于另一點B,過B與x軸平行的直線和過F與AB垂直的直線交于點N,AN與x軸交于點M,求M的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖如圖所示,考慮以下結(jié)論:

8

0

4

3

3

6

6

8

3

8

9

1

1

2

3

4

5

2

5

1

4

0

5

4

6

9

1

6

7

9

①甲運動員得分的中位數(shù)大于乙運動員

得分的中位數(shù);

②甲運動員得分的中位數(shù)小于乙運動員

得分的中位數(shù);

③甲運動員得分的標準差大于乙運動員

得分的標準差;

④甲運動員得分的標準差小于乙運動員

得分的標準差;

其中根據(jù)莖葉圖能得到的正確結(jié)論的編號為(  )

A. ①③ B. ①④

C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足cos2B﹣cos2C﹣sin2A=sinAsimB.
(1)求角C;
(2)向量 =(sinA,cosB), =(cosx,sinx),若函數(shù)f(x)= 的圖象關(guān)于直線x= 對稱,求角A,B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的圖像向左平移個單位,再向下平移1個單位,得到函數(shù)的圖像,則下列關(guān)于函數(shù)的說法中正確的個數(shù)是(

函數(shù)的最小正周期是 函數(shù)的一條對稱軸是

③函數(shù)的一個零點是 ④函數(shù)在區(qū)間上單調(diào)遞減

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在拋物線 上, 點到拋物線的焦點的距離為2,直線

與拋物線交于兩點.

(1)求拋物線的方程;

(2)若以為直徑的圓與軸相切,求該圓的方程.

查看答案和解析>>

同步練習冊答案