在△ABC中,a,b,c為角A,B,C所對(duì)的邊長(zhǎng),z1=a+bi,z2=cos A+icos B.若復(fù)數(shù)z1•z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在虛軸上,試判斷△ABC的形狀.
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則及其幾何意義、解三角形的有關(guān)知識(shí)即可得出.
解答: 解:由題意知z1•z2=(a+bi)•(cos A+icos B)=(acos A-bcos B)+(acos B+bcos A)i,
∴acos A-bcos B=0,且acos B+bcos A≠0,
∴2A=2B,或2A+2B=π,即A=B,或A+B=
π
2

∴△ABC為等腰三角形或直角三角形
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則及其幾何意義、解三角形,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:函數(shù)f(x)=-x3+1在(-∞,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},a1=1,an=an-1+
1
n(n+1)
,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足約束條件
5x+2y≤30
x≥0
y≥0
,求目標(biāo)函數(shù)z=4x-y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知△ABC的頂點(diǎn)A(8,5),B(4,-2),C(-6,3).求經(jīng)過(guò)兩邊AB和AC中點(diǎn)的直線的方程.
(2)對(duì)某校初二男生進(jìn)行體育項(xiàng)目俯臥撐測(cè)試,被抽到的50名學(xué)生的成績(jī)?nèi)缦拢?br />
成績(jī)(次)109876543
人數(shù)865164731
試求全校初二男生俯臥撐測(cè)試的平均成績(jī).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程為2x+y=0,且頂點(diǎn)到漸近線的距離為
2
5
5
.  
(1)求此雙曲線的方程;
(2)設(shè)點(diǎn)P為雙曲線上一點(diǎn),A、B兩點(diǎn)在雙曲線的漸近線上,且分別位于第一、第二象限,若
AP
=
PB
,求△AOP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知扇形的周長(zhǎng)是6cm,面積是2cm2,求扇形的中心角的弧度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

﹙Ⅰ﹚求值:tan23°+tan37°+
3
tan23°tan37°;
﹙Ⅱ﹚求值:(tan60°-tan10°)sin40°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙、丁四人商量去看電影.
甲說(shuō):乙去我才去;
乙說(shuō):丙去我才去;
丙說(shuō):甲不去我就不去;
丁說(shuō):乙不去我就不去.
最后有人去看電影,有人沒(méi)去看電影,去的人是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案