在某次測(cè)驗(yàn)中,有6位同學(xué)的平均成績(jī)?yōu)?5分.用表示編號(hào)為)的同學(xué)所得成績(jī),且前5位同學(xué)的成績(jī)?nèi)缦拢?0,76,72,70,72.
(1)求第6位同學(xué)的成績(jī),及這6位同學(xué)成績(jī)的標(biāo)準(zhǔn)差
(2)從前5位同學(xué)中,隨機(jī)地選2位同學(xué),求恰有1位同學(xué)成績(jī)?cè)趨^(qū)間(68,75)中的概率.

(1)s=7;(2)

解析試題分析:(1)根據(jù)平均數(shù)公式寫(xiě)出這組數(shù)據(jù)的平均數(shù)表示式,在表示式中有一個(gè)未知量,根據(jù)解方程的思想得到結(jié)果,求出這組數(shù)據(jù)的方差,再進(jìn)一步做出標(biāo)準(zhǔn)差.
(2)本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是從5位同學(xué)中選2個(gè),共有C52種結(jié)果,滿足條件的事件是恰有一位成績(jī)?cè)趨^(qū)間(68,75)中,共有C41種結(jié)果,根據(jù)概率公式得到結(jié)果.
試題解析:解:(1)∵=75,
=6×75-70-76-72-70-72=90,         2分
s2= (52+12+32+52+32+152)=49,
∴s=7.          4分
(2)從5位同學(xué)中隨機(jī)選取2位同學(xué),共有如下10種不同的取法:
{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}. 8分
選出的2位同學(xué)中,恰有1位同學(xué)的成績(jī)位于(68,75)的取法共有如下4種:
{1,2},{2,3},{2,4},{2,5},         10分
故所求概率為.         12分
考點(diǎn):(1)數(shù)字特征;(2)古典概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線
性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為緩解某路段交通壓力,計(jì)劃將該路段實(shí)施“交通限行”.在該路段隨機(jī)抽查了50人,了解公眾對(duì)“該路段限行”的態(tài)度,將調(diào)查情況進(jìn)行整理,制成下表:

年齡
(歲)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
頻 數(shù)
5
10
15
10
5
5
贊成
人數(shù)
4
8
9
6
4
3
(1)作出被調(diào)查人員年齡的頻率分布直方圖.
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中不贊成“交通限行”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

研究性學(xué)習(xí)小組為了解某生活小區(qū)居民用水量(噸)與氣溫(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)并制作了5天該小區(qū)居民用水量與當(dāng)天氣溫的對(duì)應(yīng)表:

日期
9月5日
10月3日
10月8日
11月16日
12月21日
氣溫(℃)
18
15
11
9
-3
用水量(噸)
57
46
36
37
24
(1)若從這隨機(jī)統(tǒng)計(jì)的5天中任取2天,求這2天中有且只有1天用水量低于40噸的概率(列出所有的基本事件);
(2)由表中數(shù)據(jù)求得線性回歸方程中的,試求出的值,并預(yù)測(cè)當(dāng)?shù)貧鉁貫?℃時(shí),該生活小區(qū)的用水量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩所學(xué)校高三年級(jí)分別有1 200人,1 000人,為了了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)六校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:

分組
[70,80)
[80,90)
[90,100)
[100,110)
頻數(shù)
3
4
8
15
 
 
 
 
 
分組
[110,120)
[120,130)
[130,140)
[140,150]
頻數(shù)
15
x
3
2
乙校:
分組
[70,80)
[80,90)
[90,100)
[100,110)
頻數(shù)
1
2
8
9
 
 
 
 
 
分組
[110,120)
[120,130)
[130,140)
[140,150]
頻數(shù)
10
10
y
3
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,請(qǐng)分別估計(jì)兩所學(xué)校數(shù)學(xué)成績(jī)的優(yōu)秀率;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為兩所學(xué)校的數(shù)學(xué)成績(jī)有差異.
 
甲校
乙校
總計(jì)
優(yōu)秀
 
 
 
非優(yōu)秀
 
 
 
總計(jì)
 
 
 
參考數(shù)據(jù)與公式:由列聯(lián)表中數(shù)據(jù)計(jì)算K2. ?
臨界值表
P(K2k0)
0.10
0.05
0.010
k0
2.706
3.841
6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某校在一次趣味運(yùn)動(dòng)會(huì)的頒獎(jiǎng)儀式上,高一、高二、高三各代表隊(duì)人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會(huì)組委會(huì)在頒獎(jiǎng)過(guò)程中穿插抽獎(jiǎng)活動(dòng),并用分層抽樣的方法從三個(gè)代表隊(duì)中共抽取20人在前排就坐,其中高二代表隊(duì)有6人.
(1)求n的值;
(2)把在前排就坐的高二代表隊(duì)6人分別記為a,b,c,d,e,f,現(xiàn)隨機(jī)從中抽取2人上臺(tái)抽獎(jiǎng),.求a和b至少有一人上臺(tái)抽獎(jiǎng)的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱(chēng),是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T(mén).其
范圍為[0,10],分別有五個(gè)級(jí)別:T∈[0,2)暢通;T∈[2,4)基本暢通; T∈[4,6)輕度擁堵; T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢砀叻鍟r(shí)段(T≥2),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的部分直方圖如圖所示.

(1)請(qǐng)補(bǔ)全直方圖,并求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范胃饔卸嗌賯(gè)?
(2)用分層抽樣的方法從交通指數(shù)在[4,6),[6,8),[8,l0]的路段中共抽取6個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);
(3)從(2)中抽出的6個(gè)路段中任取2個(gè),求至少一個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

M公司從某大學(xué)招收畢業(yè)生,經(jīng)過(guò)綜合測(cè)試,錄用了14名男生和6名女生,這20名畢業(yè)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績(jī)?cè)?80分以上者到“甲部門(mén)”工作;180分以下者到“乙部門(mén)”工作。

(I)求男生成績(jī)的中位數(shù)及女生成績(jī)的平均值;
(II)如果用分層抽樣的方法從“甲部門(mén)”人選和“乙部門(mén)”人選中共選取5人,再?gòu)倪@5人中選2人,那么至少有一人是“甲部門(mén)”人選的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖所示.
 
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班樣本的方差.

查看答案和解析>>

同步練習(xí)冊(cè)答案