已知函數(shù)f(x)=sin(ωx+
π
3
)(ω>0)在(π,
3
)上單調(diào)遞減,則實(shí)數(shù)ω的取值范圍是
 
考點(diǎn):正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)的圖象和性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,建立不等式關(guān)系即可得到結(jié)論.
解答: 解:由
π
2
+2kπ≤ωx+
π
3
2
+2kπ,
即由
π
6
+2kπ≤ωx≤
6
+2kπ,
π
+
2kπ
ω
≤x≤
+
2kπ
ω
,
若f(x)=sin(ωx+
π
3
)(ω>0)在(π,
3
)上單調(diào)遞減,
π
+
2kπ
ω
≤π且
+
2kπ
ω
3

ω≥
1
6
+2k
ω≤
7
8
+
3
2
k
,
若k=0,則
1
6
≤ω≤
7
8
,
若k=1,則
ω≥
13
6
ω≤
19
8
,即
13
6
≤ω≤
19
8

當(dāng)k≥2或k≤-1不等式不成立,
故答案為:[
1
6
7
8
]∪[
13
6
19
8
]
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象和性質(zhì),求出函數(shù)的單調(diào)遞減區(qū)間是解決本題的關(guān)鍵,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx(x>0)
(1)試求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若g(x)=f′(x),直線y=kx+b與曲線g(x)相交于A(x1,y1),B(x2,y2)不同兩點(diǎn),若x0=
x1+x2
2
試證明k>g′(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N*),計(jì)算可得f(2)=
3
2
,f(4)>2,f(8)>
5
2
,f(16)>3,f(32)>
7
2
,推測(cè)當(dāng)n≥2時(shí),有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了測(cè)量一個(gè)心形圖形的面積,現(xiàn)使用計(jì)算機(jī)設(shè)計(jì)一個(gè)模擬實(shí)驗(yàn),將該圖形放在一個(gè)邊長(zhǎng)為2cm的正方形中(如圖所示),發(fā)現(xiàn)在正方形中的10000個(gè)隨機(jī)的點(diǎn)中有3000個(gè)點(diǎn)落在該圖形內(nèi),則這個(gè)心形圖形的面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
cos(180°+α)•sin(α+360°)
sin(-α-180°)•cos(-180°-α)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間(0,1)中隨機(jī)地取出兩個(gè)數(shù),則兩數(shù)之和小于
2
3
的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=sinx+
3
cosx(x∈R)的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-x,那么當(dāng)h→0時(shí),
f(1+h)-f(1)
h
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各式的值等于
1
4
的是( 。
A、2cos2
π
12
-1
B、1-2sin275°
C、sin15°cos15°
D、
2tan22.5°
1-tan222.5°

查看答案和解析>>

同步練習(xí)冊(cè)答案