已知如圖(1),梯形ABCD中,AD∥BC,∠ABC=∠BAD=,AB=BC=2AD=4,E、F分別是AB、CD上的動點(diǎn),且EF∥BC,設(shè)AE=x(0<x<4).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF,如圖(2).
(Ⅰ)求證:平面ABE⊥平面ABCD;
(Ⅱ)若以B、C、D、F為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;
(Ⅲ)當(dāng)f(x)取得最大值時,求異面直線CD和BE所成角的余弦值.

【答案】分析:(1)由面面垂直的判定定理推出即可;
(2)過D作DH∥AE,則DG=AE,且DH⊥平面EBCF,由f(x)=VD-BFC =×S△BFC×DH 求出f(x)的解析式,由二次函數(shù)的性質(zhì)求出其最大值;
(3)作平行線得到∠AMN即為異面直線CD和BE所成的角,求出此角所在三角形的三邊長,余弦定理求得θ的余弦值.
解答:解:(Ⅰ)∵平面AEFD⊥平面EBCF,AE⊥EF,∴AE⊥平面EBCF,
∴AE⊥BC
∵BE⊥BC,
∴BC⊥平面ABE.
又BC?平面ABCD,
∴平面ABE⊥平面ABCD.  …(4分)
(Ⅱ)∵AD∥平面BFC,
…6分
=
即x=2時,f(x)有最大值.  …(8分)
(Ⅲ)取BC中點(diǎn)M,作MN∥BE交EF于N,連結(jié)AM,AN,
∵M(jìn)C∥AD,且MC=AD,
∴AMCD為平行四邊形.∴AM∥CD
∴∠AMN即為異面直線CD和BE所成的角.…(10分)
計(jì)算得,MN=2,,
…(12分)
點(diǎn)評:本題考查求三棱錐的體積,求函數(shù)的最大值,求異面直線所成的角的余弦值,找出異面直線所成的角,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖1,在梯形ABCD中,AD∥BC,∠ABC=
π2
,AB=BC=2AD=2,E、F分別是線段AB、CD上的動點(diǎn)且EF∥BC,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD丄平面EBCF (如圖2).
精英家教網(wǎng)
(1)當(dāng)AE為何值時,有BD丄EG?
(2)設(shè)AE=x,以F、B、C、D為頂點(diǎn)的三梭錐的體積記為f(x),求f(x)的最大值;并求此時二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖1,在梯形ABCD中,AD∥BC,∠ABC=
π2
,AB=BC=2AD=2,E
、F分別為線段AB、CD的動點(diǎn),且EF∥BC,G是BC的中點(diǎn),沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF(如圖2).
(1)當(dāng)AE為何值時,BD⊥EG;
(2)在(1)的條件下,求BD與平面ABF所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•河北區(qū)二模)已知如圖(1),梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分別是AB、CD上的動點(diǎn),且EF∥BC,設(shè)AE=x(0<x<4).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF,如圖(2).
(Ⅰ)求證:平面ABE⊥平面ABCD;
(Ⅱ)若以B、C、D、F為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;
(Ⅲ)當(dāng)f(x)取得最大值時,求異面直線CD和BE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(12分)已知如圖(1),梯形中,,、分別是上的動點(diǎn),且,設(shè))。沿將梯形翻折,使平面平面,如圖(2)。

(Ⅰ)求證:平面平面;

(Ⅱ)若以、、為頂點(diǎn)的三棱錐的體積記為,求的最大值;

(Ⅲ)當(dāng)取得最大值時,求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案