已知橢圓兩焦點分別為F1、F2,P是橢圓在第一象限弧上一點,并滿足=1,過P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點.
(1)求P點坐標;
(2)求直線AB的斜率;
(3)求△PAB面積的最大值.

【答案】分析:(1)設(shè)出P的坐標,則可分別表示出進而利用=1求得x和y的關(guān)系,同時根據(jù)2x2+y2=4求得x和y即P的坐標.
(2)設(shè)出AP的方程,與橢圓方程聯(lián)立根據(jù)xP=1,表示出xA和yA,同理表示出點B的坐標,進而求得AB的斜率.
(3)設(shè)出AB的方程與橢圓的方程聯(lián)立,利用韋達定理表示出x1+x2和x1x2,進而求得x1-x2,最后利用弦長公式求得AB的長.利用三角形面積公式求得答案.
解答:解:(1),設(shè)P(x,y
,

又2x2+y2=4,x,y>0,∴,即所求
(2)設(shè)lAP聯(lián)立
得:
∵xP=1,∴,

同理,

(3)設(shè)lAB,聯(lián)立,
得:,∴
∴|AB|=

∴S=
當且僅當m=±2時等號成立.
點評:本題主要考查了直線與圓錐曲線的關(guān)系.考查了學生綜合分析問題和解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(08年山西大學附中五模理) 已知橢圓兩焦點分別為、,是橢圓在第一象限弧上一點,并滿

,過作傾斜角互補的兩條直線分別交橢圓于、兩點.

(Ⅰ)求點坐標;                     (Ⅱ)求證直線的斜率為定值;

(Ⅲ)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年西工大附中一模文)(14分)已知橢圓兩焦點分別為F1、F2,P是橢圓在第一象限弧上一點,并滿足=1,過P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點。 

(1)求P點坐標;   (2)求直線AB的斜率;

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年西工大附中一模理) (14分) 已知橢圓兩焦點分別為F1、F2,P是橢圓在第一象限弧上一點,并滿足=1,過P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點. 

(1)求P點坐標;  

(2)求直線AB的斜率;

(3)求△PAB面積的最大值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓兩焦點分別為F1、F2P是橢圓在第一象限弧上一點,并滿足,過P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點.   

(1)求P點坐標;                               

(2)求證直線AB的斜率為定值;   

(3)求△PAB面積的最大值。

                                                        

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省高三上學期10月月考數(shù)學試卷 題型:解答題

已知橢圓兩焦點分別為F1、F2、P是橢圓在第一象限弧上一點,并滿足,過P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點

   (1)求P點坐標;

   (2)求證直線AB的斜率為定值;

   (3)求△PAB面積的最大值。

 

 

 

查看答案和解析>>

同步練習冊答案