(理科)袋中有同樣的球5個,其中3個紅色,2個黃色,現(xiàn)從中隨機且不返回地摸球,每次摸1個,當兩種顏色的球都被摸到時,即停止摸球,記隨機變量ξ為此時已摸球的次數(shù),求:.
(1)隨機變量ξ的概率分布列;(2)隨機變量ξ的數(shù)學期望與方差.
(文科)袋中有同樣的球9個,其中6個紅色,3個黃色,現(xiàn)從中隨機地摸6球,求:(1)紅色球與黃色球恰好相等的概率(用分數(shù)表示結果)
(2)紅色球多于黃色球的不同摸法的方法數(shù).
(理)(1)由題設知,隨機變量ξ可取的值為2,3,4,
P(ξ=2)=
C12
C13
C12
C15
C14
=
3
5
;
P(ξ=3)=
A22
C13
+
A23
C12
C15
C14
C13
=
3
10
;
P(ξ=4)=
A33
C12
C15
C14
C13
C12
=
1
10

∴隨機變量ξ的概率分布列為:
x 2 3 4
P(ξ=x)
3
5
3
10
1
10
(2)∵隨機變量ξ的概率分布列為:
x 2 3 4
P(ξ=x)
3
5
3
10
1
10
∴隨機變量ξ的數(shù)學期望為:Eξ=2×
3
5
+3×
3
10
+4×
1
10
=
5
2
;
隨機變量ξ的方差為:Dξ=(2-2.5)2×
3
5
+(3-2.5)2×
3
10
+(4-2.5)2×
1
10
=
9
20

(文)(1)紅色球與黃色球恰好相等的概率:
P=
C36
C33
C69

=
5
21

(2)紅色球多于黃色球的不同摸法的方法數(shù)為:
C66
C03
+
C56
C13
+
C46
C23

=64.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(理科)袋中有同樣的球5個,其中3個紅色,2個黃色,現(xiàn)從中隨機且不返回地摸球,每次摸1個,當兩種顏色的球都被摸到時,即停止摸球,記隨機變量ξ為此時已摸球的次數(shù),求:.
(1)隨機變量ξ的概率分布列;(2)隨機變量ξ的數(shù)學期望與方差.
(文科)袋中有同樣的球9個,其中6個紅色,3個黃色,現(xiàn)從中隨機地摸6球,求:(1)紅色球與黃色球恰好相等的概率(用分數(shù)表示結果)
(2)紅色球多于黃色球的不同摸法的方法數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理科)袋中有同樣的球5個,其中3個紅色,2個黃色,現(xiàn)從中隨機且不返回地摸球,每次摸1個,當兩種顏色的球都被摸到時,即停止摸球,記隨機變量ξ為此時已摸球的次數(shù),求:.
(1)隨機變量ξ的概率分布列;(2)隨機變量ξ的數(shù)學期望與方差.
(文科)袋中有同樣的球9個,其中6個紅色,3個黃色,現(xiàn)從中隨機地摸6球,求:(1)紅色球與黃色球恰好相等的概率(用分數(shù)表示結果)
(2)紅色球多于黃色球的不同摸法的方法數(shù).

查看答案和解析>>

同步練習冊答案