一企業(yè)生產(chǎn)的某產(chǎn)品在不做電視廣告的前提下,每天銷售量為b噸.經(jīng)市場調(diào)查后得到如下規(guī)律:若對產(chǎn)品進(jìn)行電視廣告的宣傳,每天的銷售量S(噸)與電視廣告每天的播放量n(次)的關(guān)系可用如圖所示的程序框圖來體現(xiàn).

(1)試寫出該產(chǎn)品每天的銷售量S(噸)關(guān)于電視廣告每天的播放量n(次)的函數(shù)關(guān)系式;
(2)要使該產(chǎn)品每天的銷售量比不做電視廣告時的銷售量至少增加90%,則每天電視廣告的播放量至少需多少次?
(1)
(2)至少需4次

試題分析:(1)設(shè)電視廣告播放量為每天i次時,該產(chǎn)品的銷售量為si(0≤i≤n,)根據(jù)循環(huán)體可得再用數(shù)列中的累加法求得sn
(2)“要使該產(chǎn)品每天的銷售量比不做電視廣告時的銷售量至少增加90%”根據(jù)(1)則有,或通過驗證得到結(jié)果.
試題解析:(1)解:設(shè)電視廣告播放量為每天i次時,該產(chǎn)品的銷售量為
于是當(dāng)時,
          5分
所以,該產(chǎn)品每天銷售量S(噸)與電視廣告播放量n(次/天)的函數(shù)關(guān)系式為
      7分
(2)由題意,有所以,要使該產(chǎn)品的銷售量比不做電視廣告時的銷售量增加90%,則每天廣告的播放量至少需4次.      12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其中實數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)的圖象只有一個公共點(diǎn)且存在最小值時,記的最小值為,求的值域;
(3)若在區(qū)間內(nèi)均為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的零點(diǎn)所在區(qū)間是(      )
A.(B.(C.(,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù) 則下列關(guān)于函數(shù)的零點(diǎn)個數(shù)的判斷正確的是(   )
A.當(dāng)時,有3個零點(diǎn);當(dāng)時,有2個零點(diǎn)
B.當(dāng)時,有4個零點(diǎn);當(dāng)時,有1個零點(diǎn)
C.無論為何值,均有2個零點(diǎn)
D.無論為何值,均有4個零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域為D,若存在閉區(qū)間[a,b]D,使得函數(shù)滿足:(1)在[a,b]內(nèi)是單調(diào)函數(shù);(2)在[a,b]上的值域為[2a,2b],則稱區(qū)間[a,b]為y=的“美麗區(qū)間”.下列函數(shù)中存在“美麗區(qū)間”的是          . (只需填符合題意的函數(shù)序號) 
①、;        ②、;
③、;        ④、.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將進(jìn)貨單價為80元的商品按90元一個售出時,能賣出400個,已知該商品每個漲價1元,其銷售量就減少20個,為了賺得最大利潤,售價應(yīng)定為(       )
A.每個95元 B.每個100元C.每個105元D.每個110元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于在區(qū)間[a,b]上有意義的兩個函數(shù),如果對于區(qū)間[a,b]中的任意x均有,則稱在[a,b]上是“密切函數(shù)”, [a,b]稱為“密切區(qū)間”,若函數(shù)在區(qū)間[a,b]上是“密切函數(shù)”,則的最大值為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),函數(shù)單調(diào)遞減,則(  )
A.在上單調(diào)遞減,在上單調(diào)遞增
B.在上單調(diào)遞增,在上單調(diào)遞減
C.在上單調(diào)遞增,在上單調(diào)遞增
D.在上單調(diào)遞減,在上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義區(qū)間,,的長度均為. 用表示不超過的最大整數(shù),記,其中.設(shè),,若用表示不等式解集區(qū)間的長度,則當(dāng)時,有(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案