函數(shù)y=
2
sin(2x-π)cos(x+π)是( 。
A、周期為
π
4
的奇函數(shù)
B、周期為
π
4
的偶函數(shù)
C、周期為
π
2
的奇函數(shù)
D、周期為
π
2
的偶函數(shù)
分析:利用誘導公式化簡函數(shù)y=
2
sin(2x-π)cos(x+π),化為一個叫的一個三角函數(shù)的形式,判斷單調(diào)性,求出周期即可判斷選項.
解答:解:y=-
2
sin2xcos2x=-
2
2
sin4x
,它是奇函數(shù),T=
4
=
π
2

故選C.
點評:本題考查三角函數(shù)的周期性及其求法,函數(shù)奇偶性的判斷,運用誘導公式化簡求值,正弦函數(shù)的奇偶性,考查計算能力,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2sin(2x+
π
2
)
是( 。
A、周期為π的奇函數(shù)
B、周期為π的偶函數(shù)
C、周期為2π的奇函數(shù)
D、周期為2π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•虹口區(qū)二模)已知函數(shù)y=2sin(x+
π
2
)cos(x-
π
2
)
與直線y=
1
2
相交,若在y軸右側(cè)的交點自左向右依次記為M1,M2,M3,…,則|
M1M13
|
等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

要得到函數(shù)y=2sin(2x+
3
)
的圖象,需要將函數(shù)y=2sin(2x-
3
)
的圖象( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=2sin(3x+
π
2
)

(1)利用五點法作出函數(shù)在x∈[-
π
6
π
2
]
上的圖象.
(2)當x∈R時,求f(x)的最小正周期;
(3)當x∈R時,求f(x)的單調(diào)遞減區(qū)間;
(4)當x∈R時,求f(x)圖象的對稱軸方程,對稱中心坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)下面有四個命題:
①函數(shù)y=2|sin(2-2x)|的周期是π;
②函數(shù)y=2sin|2x-2|的圖象的對稱軸是直線x=1;
③函數(shù)y=2sin(2x-2)+1的圖象的一個對稱中心的坐標是(1,1)
④函數(shù)y=2sin(2x-2)的圖象向右平移2個單位得到函數(shù)y=2sin(2x-4)的圖象.
其中真命題的序號是

查看答案和解析>>

同步練習冊答案