在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c,且滿足(b-c-a)(b-c+a)+bc=0.
(1)求∠A的大。
(2)若f(x)=
3
sin
x
2
cos
x
2
+cos2
x
2
,求f(B)的取值范圍.
考點(diǎn):余弦定理,三角函數(shù)中的恒等變換應(yīng)用
專題:解三角形
分析:(1)利用余弦定理表示出cosA,將已知等式整理后代入計(jì)算求出cosA的值,即可確定出A的度數(shù);
(2)f(x)解析式利用二倍角的正弦、余弦函數(shù)公式化簡,再利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),利用正弦函數(shù)的值域即可確定出f(B)的范圍.
解答: 解:(1)∵在銳角△ABC中,(b-c-a)(b-c+a)+bc=(b-c)2-a2+bc=b2+c2-a2-bc=0,即b2+c2-a2=bc,
∴cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2
,
∴A=60°;
(2)f(B)=
3
2
sinB+
1
2
(cosB+1)=
3
2
sinB+
1
2
cosB+
1
2
=sin(B+30°)+
1
2

∵銳角△ABC,0<B<90°,
∴30°<B+30°<120°,即
1
2
<sin(B+30°)<1,
則f(B)的取值范圍為(1,
3
2
).
點(diǎn)評:此題考查了余弦定理,以及三角函數(shù)中的恒等變換應(yīng)用,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線x2=2py(p>0)的焦點(diǎn)與雙曲線
y2
3
-x2=1的一個(gè)焦點(diǎn)重合,則p的值為( 。
A、-2B、2C、-4D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,當(dāng)x>0時(shí),f(x)>1,且對任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y)-1.
(1)試探究函數(shù)f(x)的單調(diào)性.
(2)若f(2)=3,試解不等式f(x2)+f(1-4x)<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2+cos(2x-
π
3
),sinx-cosx),
b
=(1,sinx+cosx),函數(shù)f(x)=
a
b
-m(x∈R)在區(qū)間[-
π
24
,
12
]上的最小值為-
2
2

(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)在△ABC中,角A,B,C所對的邊是a,b,c.若A為銳角,且滿足f(A)=1,sinB=2sinC,△ABC面積為
3
,求邊長a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ACB=90°.以AB,BC為鄰邊作平行四邊形ABCD,連接DA1和DC1. 
(Ⅰ)求證:A1D∥平面BCC1B1;
(Ⅱ)求證:AC⊥平面ADA1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x≠0,函數(shù)f(x)滿足f(x+
1
x
)=2x2+
2
x2
-1,求f(5)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖幾何體中,四邊形ABCD為矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF∥AB,AF⊥CF.
(Ⅰ)若G為FC的中點(diǎn),證明:AF∥面BDG;
(Ⅱ)求二面角A-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品的廣告費(fèi)用支出x萬元與銷售額y萬元之間有如下的對應(yīng)數(shù)據(jù):
 x  2  4  5  6  8
 y  30  40  60  50  70
(1)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)據(jù)此估計(jì)廣告費(fèi)用為10萬元時(shí),所得的銷售收入.
(參考數(shù)值:
5
i=1
x
2
i
=145,
5
i=1
xiyi=1380,參考公式:b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-
.
x
.
y
n
i=1
x
2
i
-n
.
x2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐A-BCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).
(Ⅰ)若AC=BD,求證:四邊形EFGH為菱形;
(Ⅱ)若AB=AD,BC=CD,且O為BD中點(diǎn),求證:BD⊥平面AOC.

查看答案和解析>>

同步練習(xí)冊答案