角x,y滿足-數(shù)學(xué)公式<x<y<數(shù)學(xué)公式,則x-y的取值范圍是


  1. A.
    (-π,0)
  2. B.
    (-π,π)
  3. C.
    (-數(shù)學(xué)公式,0)
  4. D.
    (-數(shù)學(xué)公式數(shù)學(xué)公式
A
分析:由-<x<y<,可得-<x<,-<-y<,結(jié)合x<y,利用同向不等式的可加性可求.
解答:∵-<x<y<
∴-<x<①,-<y<,
∴-<-y<②,
∴①+②得-π<x-y<π,又x<y?x-y<0,
則x-y的取值范圍是(-π,0)
故選A.
點(diǎn)評:本題主要考查了不等式的性質(zhì):同向不等式的可加性的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示為某風(fēng)景區(qū)設(shè)計(jì)建造的一個(gè)休閑廣場,廣場的中間造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成對稱的十字形區(qū)域,十字形區(qū)域面積為2000m2,計(jì)劃在正方方形MNPQ上建一座“觀景花壇”,造價(jià)為每平方4100元,在四個(gè)相同的矩形上(圖中陰影部分)鋪石材地坪,價(jià)格為每平方110元,再在四個(gè)空角(如△DQH等)上鋪草坪,價(jià)格為每平方80元.設(shè)AD長為xm,DQ長為ym.
(I)試找出x與y滿足的等量關(guān)系式;
(Ⅱ)若該廣場的占地面積不超過2800m2,求x的取值范圍;
(Ⅲ)求該廣場的總造價(jià)的最小值及此時(shí)AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角x,y滿足-
π
2
<x<y<
π
2
,則x-y的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角x、y滿足-<x<y<,則x-y的取值范圍是(    )

A.(-π,0)                B.(-π,π)

C.(- ,0)            D.(- ,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示為某風(fēng)景區(qū)設(shè)計(jì)建造的一個(gè)休閑廣場,廣場的中間造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成對稱的十字形區(qū)域,十字形區(qū)域面積為2000m2,計(jì)劃在正方方形MNPQ上建一座“觀景花壇”,造價(jià)為每平方4100元,在四個(gè)相同的矩形上(圖中陰影部分)鋪石材地坪,價(jià)格為每平方110元,再在四個(gè)空角(如△DQH等)上鋪草坪,價(jià)格為每平方80元.設(shè)AD長為xm,DQ長為ym.
(I)試找出x與y滿足的等量關(guān)系式;
(Ⅱ)若該廣場的占地面積不超過2800m2,求x的取值范圍;
(Ⅲ)求該廣場的總造價(jià)的最小值及此時(shí)AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省無錫市高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示為某風(fēng)景區(qū)設(shè)計(jì)建造的一個(gè)休閑廣場,廣場的中間造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成對稱的十字形區(qū)域,十字形區(qū)域面積為2000m2,計(jì)劃在正方方形MNPQ上建一座“觀景花壇”,造價(jià)為每平方4100元,在四個(gè)相同的矩形上(圖中陰影部分)鋪石材地坪,價(jià)格為每平方110元,再在四個(gè)空角(如△DQH等)上鋪草坪,價(jià)格為每平方80元.設(shè)AD長為xm,DQ長為ym.
(I)試找出x與y滿足的等量關(guān)系式;
(Ⅱ)若該廣場的占地面積不超過2800m2,求x的取值范圍;
(Ⅲ)求該廣場的總造價(jià)的最小值及此時(shí)AD的長.

查看答案和解析>>

同步練習(xí)冊答案