已知函數(shù)f(n)=log(n+1)(n+2)(n∈N*),若存在正整數(shù)k滿足:f(1)•f(2)•f(3)•…•f(n)=k,那么我們把k叫做關(guān)于n的“對(duì)整數(shù)”,則當(dāng)n∈[1,10]時(shí),“對(duì)整數(shù)”共有( 。
分析:由題意,f(x)=log(x+1) (x+2)=
lg(x+2)
lg(x+1)
,再計(jì)算f(1)f(2)f(3)…f(x)=log2(x+2),根據(jù)1≤x≤100,得log23≤log2(x+2)≤log212,從而可得“對(duì)整數(shù)”的個(gè)數(shù).
解答:解:由題意,根據(jù)換底公式得,f(x)=log(x+1) (x+2)=
lg(x+2)
lg(x+1)
,
所以k=f(1)f(2)f(3)…f(x)=
lg3
lg2
lg4
lg3
lg5
lg4
lg(x+2)
lg(x+1)
=
lg(x+2)
lg2
=log2(x+2).
∵1≤x≤10,∴l(xiāng)og23≤log2(x+2)≤log212
整數(shù)有l(wèi)og24,log28,即2,3,兩個(gè)整數(shù).
故選:B.
點(diǎn)評(píng):本題的考點(diǎn)排列、組合的實(shí)際應(yīng)用,主要考查新定義,考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xn,其中n∈Z,n≥2.曲線y=f(x)在點(diǎn)P(x0,f(x0))(x0>0)處的切線為l,l與x軸交于點(diǎn)Q,與y軸交于點(diǎn)R,則
|PQ|
|PR|
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx.其中常數(shù)a>0.
(1)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=4時(shí),給出兩類直線:6x+y+m=0與3x-y+n=0,其中m,n為常數(shù),判斷這兩類直線中是否存在y=f(x)的切線,若存在,求出相應(yīng)的m或n的值,若不存在,說明理由.
(3)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)x-x0
>0
在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”,當(dāng)a=4時(shí),試問y=f(x)是否存在“類對(duì)稱點(diǎn)”,若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(x-
12
)的定義域?yàn)椋╪,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個(gè)數(shù)記為g(n).
(1)求出g(3)的值;
(2)求g(n)的表達(dá)式;
(3)若對(duì)于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實(shí)數(shù)l的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2bx的圖象在點(diǎn)A(0,f(0))處的切線L與直線x-y+3=0平行,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2013的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2013的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案