已知存在實數(shù)使得不等式成立,則實數(shù)的取值范圍是 .
【解析】
試題分析:解:由題意借助數(shù)軸,|x-3|-|x+2|∈[-5,5],∵存在實數(shù)x使得不等式|x-3|-|x+2|≥|3a-1|成立,∴5≥|3a-1|,解得-5≤3a-1≤5,即-≤a≤2,故答案為[- ,2]
考點:絕對值不等式
點評:本題考查絕對值不等式,求解本題的關(guān)鍵是正確理解題意,區(qū)分存在問題與恒成立問題的區(qū)別,本題是一個存在問題,解決的是有的問題,故取|3a-1|≤5,即小于等于左邊的最大值即滿足題意,本題是一個易錯題,主要錯誤就是出在把存在問題當(dāng)成恒成立問題求解,因思維錯誤導(dǎo)致錯誤
科目:高中數(shù)學(xué) 來源: 題型:
x |
|x|-1 |
A、1 | B、2 | C、3 | D、4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年福建卷文)(12分)
已知是二次函數(shù),不等式的解集是且在區(qū)間上的最大值是12。
(I)求的解析式;
(II)是否存在實數(shù)使得方程在區(qū)間內(nèi)有且只有兩個不等的實數(shù)根?若存在,求出的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知是二次函數(shù),不等式的解集是且在區(qū)間上的最大值是12。
(I)求的解析式;
(II)是否存在實數(shù)使得方程在區(qū)間內(nèi)有且只有兩個不等的實數(shù)根?若存在,求出的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省高二第四次月考數(shù)學(xué)理卷 題型:解答題
(12分)已知是二次函數(shù),不等式的解集是且在區(qū)間上的最大值是12.
(1)求的解析式;
(2)是否存在實數(shù)使得方程在區(qū)間內(nèi)有且只有兩個不等的
實數(shù)根?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(I)求的解析式;
(II)是否存在實數(shù)使得方程在區(qū)間內(nèi)有且只有兩個不等的實數(shù)根?若存在,求出的取值范圍;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com