已知奇函數(shù) f (x) 在 (-¥,0)∪(0,+¥) 上有意義,且在 (0,+¥) 上是增函數(shù),f (1) = 0,又函數(shù) g(q) = sin 2q+ m cos q-2m,若集合M =" {m" | g(q) < 0},集合 N =" {m" | f [g(q)] < 0},求M∩N.
.
解析試題分析:根據(jù)條件中是奇函數(shù)的這一條件可以求得使的的范圍,再根據(jù)與的表達式,可以得到與的交集即是使恒成立的所有的全體,通過參變分離可以將問題轉(zhuǎn)化為求使恒成立的的取值范圍,通過求函數(shù)最大值,進而可以求出的范圍.
依題意,,又在上是增函數(shù),
∴在 上也是增函數(shù), 1分
∴ 由得或 2分
∴ 或 3分
4分
由得 5分
即 6分
∴ 7分
設(shè), 9分
∵, 10分
∴, 11分
且 12分
∴的最大值為 13分
∴ 14分
另解:本題也可用下面解法:
1. 用單調(diào)性定義證明單調(diào)性
∵對任意 ,,,
∴,
即在上為減函數(shù),
同理在上為增函數(shù),得 5分
∴.
2. 二次函數(shù)最值討論
解:依題意,,又在上是增函數(shù),
∴在
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=|ax-2|+bln x(x>0,實數(shù)a,b為常數(shù)).
(1)若a=1,f(x)在(0,+∞)上是單調(diào)增函數(shù),求b的取值范圍;
(2)若a≥2,b=1,求方程f(x)=在(0,1]上解的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個倉庫M、N (異于村莊A),要求PM=PN=MN=2(單位:千米).如何設(shè)計, 可以使得工廠產(chǎn)生的噪聲對居民的影響最小(即工廠與村莊的距離最遠).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,從點P1(0,0)作軸的垂線交曲線于點,曲線在點處的切線與軸交于點.再從做軸的垂線交曲線于點,依次重復上述過程得到一系列點:;;…;,記點的坐標為().
(1)試求與的關(guān)系();
(2)求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,某機場建在一個海灣的半島上,飛機跑道AB的長為4.5km,且跑道所在的直線與海岸線l的夾角為60o(海岸線可以看作是直線),跑道上離海岸線距離最近的點B到海岸線的距離BC=4km.D為海灣一側(cè)海岸線CT上的一點,設(shè)CD=x(km),點D對跑道AB的視角為q.
(1)將tanq表示為x的函數(shù);
(2)求點D的位置,使q取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在與時都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com