【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ-2sinθ.

(Ⅰ)求C的參數(shù)方程;

(Ⅱ)若點(diǎn)A在圓C上,點(diǎn)B(3,0),求AB中點(diǎn)P到原點(diǎn)O的距離平方的最大值.

【答案】(Ⅰ) (α為參數(shù))(Ⅱ) .

【解析】試題分析() 已知極坐標(biāo)方程兩邊同乘,利用,化簡(jiǎn)方程得直角坐標(biāo)方程,從而可求的參數(shù)方程;() 利用參數(shù)方程,設(shè)出中點(diǎn)坐標(biāo),中點(diǎn)到原點(diǎn)的距離平方用三角函數(shù)表示,根據(jù)輔助角公式化簡(jiǎn),利用三角函數(shù)的有界性,可求中點(diǎn)到原點(diǎn)的距離平方的最大值.

試題解析(Ⅰ)由ρ=4cos θ-2sin θ得ρ2=4ρcos θ-2ρsin θ,

x2+y2=4x-2y,∴(x-2)2+(y+1)2=5,

化為參數(shù)方程是 (α為參數(shù)).

(Ⅱ)設(shè)點(diǎn)P(x,y),A(x0,y0).

因?yàn)辄c(diǎn)B(3,0),且AB中點(diǎn)為P,

所以

又點(diǎn)A在圓C上,

所以x02cos α,y0=-1sin α

x2y2 (其中tanφ=5),

∴AB中點(diǎn)P到原點(diǎn)O的距離平方的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直角坐標(biāo)平面內(nèi)兩點(diǎn)P,Q滿足條件:①PQ都在函數(shù)yf(x)的圖象上;②PQ關(guān)于原點(diǎn)對(duì)稱,則稱(PQ)是函數(shù)yf(x)的一個(gè)“伙伴點(diǎn)組”(點(diǎn)組(P,Q)(Q,P)看作同一個(gè)“伙伴點(diǎn)組”).已知函數(shù)f(x)有兩個(gè)“伙伴點(diǎn)組”,則實(shí)數(shù)k的取值范圍是(  )

A. (0) B. (0,1)

C. D. (0,+)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機(jī)抽取100位員工進(jìn)行調(diào)查,得到如下的頻率分布直方圖:

(1)試由此圖估計(jì)該公司員工的月平均工資;

(2)該公司工資發(fā)放是以員工的營(yíng)銷水平為重要依據(jù)來(lái)確定的,一般認(rèn)為,工資低于4500。元的員工屬于學(xué)徒階段,沒(méi)有營(yíng)銷經(jīng)驗(yàn),若進(jìn)行營(yíng)銷將會(huì)失敗;高于4500元的員工是具備營(yíng)銷成熟員工,基進(jìn)行營(yíng)銷將會(huì)成功,F(xiàn)將該樣本按照“學(xué)徒階段工資”、“成熟員工工資”分成兩層,進(jìn)行分層抽樣,從中抽出5人,在這5人中任選2人進(jìn)行營(yíng)銷活動(dòng)。活動(dòng)中,每位員工若營(yíng)銷成功,將為公司贏得3萬(wàn)元,否則公司將損失1萬(wàn)元。試問(wèn)在此次比賽中公司收入多少萬(wàn)元的可能性最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),試判斷函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x-1|+|x-a|,a∈R.

(Ⅰ)當(dāng)a=4時(shí),求不等式f(x)≥7的解集;

(Ⅱ)若f(x)≥5對(duì)x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題共12分)

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,ADC=90°,平面PAD底面ABCD,QAD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2BC=AD=1,CD=

1)求證:平面PQB平面PAD

2)若二面角M-BQ-C30°,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn).

(Ⅰ)求證:PC∥平面EBD;

(Ⅱ)求證:平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著國(guó)家二孩政策的全面放開(kāi),為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡(jiǎn)單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.

非一線

一線

總計(jì)

愿生

45

20

65

不愿生

13

22

35

總計(jì)

58

42

100

K2,得K2.

參照下表,

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

正確的結(jié)論是( )

A. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為生育意愿與城市級(jí)別有關(guān)

B. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為生育意愿與城市級(jí)別無(wú)關(guān)

C. 99%以上的把握認(rèn)為生育意愿與城市級(jí)別有關(guān)

D. 99%以上的把握認(rèn)為生育意愿與城市級(jí)別無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省高考改革實(shí)施方案指出:該省高考考生總成績(jī)將由語(yǔ)文、數(shù)學(xué)、外語(yǔ)3門統(tǒng)一高考成績(jī)和學(xué)生自主選擇的學(xué)業(yè)水平等級(jí)性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學(xué)生家長(zhǎng)對(duì)高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長(zhǎng)作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見(jiàn).下面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認(rèn)為贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?

贊成

不贊成

合計(jì)

城鎮(zhèn)居民

農(nóng)村居民

合計(jì)

P(K2k0

0.10

0.05

0.005

k0

2.706

3.841

7.879

注: 其中

(2)用樣本的頻率估計(jì)概率,若隨機(jī)在全省不贊成高考改革的家長(zhǎng)中抽取3個(gè),記這3個(gè)家長(zhǎng)中是城鎮(zhèn)戶口的人數(shù)為x,試求x的分布列及數(shù)學(xué)期望E(x).

查看答案和解析>>

同步練習(xí)冊(cè)答案