已知橢圓的兩個(gè)焦點(diǎn)為(),(1,0),橢圓的長(zhǎng)半軸長(zhǎng)為2,則橢圓方程為(  )
A.B.
C.D.
D
因?yàn)闄E圓的兩個(gè)焦點(diǎn)為(),(1,0),橢圓的長(zhǎng)半軸長(zhǎng)為2,則c=1,a=2,b2=3,因此橢圓方程為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),A和B是以O(shè)(O為坐標(biāo)原點(diǎn))為圓心,以|OF1|為半徑的圓與該橢圓的兩個(gè)交點(diǎn),且△F2AB是等邊三角形,則橢圓的離心率為(  )
A.B.C.-1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的一個(gè)焦點(diǎn)為F,若橢圓上存在點(diǎn)P,滿(mǎn)足以橢圓短軸為直徑的圓與線(xiàn)段PF相切于線(xiàn)段PF的中點(diǎn),則該橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公園內(nèi)有一橢圓形景觀水池,經(jīng)測(cè)量知,橢圓長(zhǎng)軸長(zhǎng)為20米,短軸長(zhǎng)為16米,現(xiàn)以橢圓長(zhǎng)軸所在直線(xiàn)為軸,短軸所在直線(xiàn)為軸,建立平面直角坐標(biāo)系,如圖所示:

(1)為增加景觀效果,擬在水池內(nèi)選定兩點(diǎn)安裝水霧噴射口,要求橢圓上各點(diǎn)到這兩點(diǎn)距離之和都相等,請(qǐng)指出水霧噴射口的位置(用坐標(biāo)表示),并求橢圓的方程。
(2)為了增加水池的觀賞性,擬劃出一個(gè)以橢圓的長(zhǎng)軸頂點(diǎn)A、短軸頂點(diǎn)B及橢圓上某點(diǎn)M構(gòu)成的三角形區(qū)域進(jìn)行夜景燈光布置,請(qǐng)確定點(diǎn)M的位置,使此三角形區(qū)域面積最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分16分)

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)為橢圓的右頂點(diǎn), 點(diǎn),點(diǎn)在橢
圓上, .

(1)求直線(xiàn)的方程;
(2)求直線(xiàn)被過(guò)三點(diǎn)的圓截得的弦長(zhǎng);
(3)是否存在分別以為弦的兩個(gè)相外切的等圓?若存在,求出這兩個(gè)圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓方程為,它的一個(gè)頂點(diǎn)為,離心率
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)l與橢圓交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線(xiàn)l的距離為,求△AOB面
積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線(xiàn)與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂點(diǎn),求證:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分) 若橢圓過(guò)點(diǎn),離心率為,⊙O的圓心在原點(diǎn),直徑為橢圓的短軸,⊙M的方程為,過(guò)⊙M上任一點(diǎn)P作⊙O的切線(xiàn)PA、PB,切點(diǎn)為A、B.
(1) 求橢圓的方程;
(2)若直線(xiàn)PA與⊙M的另一交點(diǎn)為Q,當(dāng)弦PQ最大時(shí),求直線(xiàn)PA的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

雙曲線(xiàn)與橢圓有相同的焦點(diǎn),直線(xiàn)的一條漸近線(xiàn),則雙曲線(xiàn)的方程是          

查看答案和解析>>

同步練習(xí)冊(cè)答案