精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

1)設,

①當時,求曲線在點處的切線方程;

②當時,求證:對任意恒成立.

2)討論的極值點個數.

【答案】1)①;②證明見解析;(2)當時,有且僅有一個極值點;當時,有三個極值點

【解析】

1)①將代入,求出切點及斜率,利用點斜式即可得切線方程;

②只需證時,對任意都成立,利用導數求其最值即可得證;
2只有一個極值點或三個極值點,令,當只有一個極值點時,的圖象必穿過軸且只穿過一次,即為單調減函數或者極值同號,分類討論即可得解,同理可求當有三個極值點時的情況.

解:(1,
時,
切線方程為
證明:要證對任意,,

只需證時,對任意都成立,


時,單減,時,單增,
,
上單增,
,
時,對任意恒成立.
2,,則
只有一個極值點或三個極值點,
,當只有一個極值點時,的圖象必穿過軸且只穿過一次,即為單調減函數或者極值同號,
i為單調減函數時,上恒成立,則,解得;
ii極值同號時,設為極值點,

有解,則
,,

同理,
,

化簡得
,解得
∴當時,只有一個極值點;
有三個極值點時,,同理可得
綜上,當時,有且僅有一個極值點;當時,有三個極值點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,,,,,.

1)證明:平面

2)若中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校共有學生15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300名學生每周平均體育運動時間的樣本數據(單位:小時).

1)應收集多少位女生的樣本數據?

2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據的分組區(qū)間為:,,,,,估計該校學生每周平均體育運動時間超過4小時的概率;

3)在樣本數據中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有的把握認為該校學生的毎周平均體育運動時間與性別有關”.

男生

女生

總計

每周平均體育運動時間不超過4小時

每周平均體育運動時間超過4小時

總計

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年雙十一落下帷幕,天貓交易額定格在268(單位:十億元)人民幣(下同),再創(chuàng)新高,比去年218(十億元)多了50(十億元).這些數字的背后,除了是消費者買買買的表現,更是購物車里中國新消費的奇跡,為了研究歷年銷售額的變化趨勢,一機構統(tǒng)計了2010年到2019年天貓雙十一的銷售額數據y(單位:十億元),繪制如表:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

編號x

1

2

3

4

5

6

7

8

9

10

銷售額y

0.9

8.7

22.4

41

65

94

132.5

172.5

218

268

根據以上數據繪制散點圖,如圖所示

1)根據散點圖判斷,哪一個適宜作為銷售額關于的回歸方程類型?(給出判斷即可,不必說明理由)

2)根據(1)的判斷結果及如表中的數據,建立關于的回歸方程,并預測2020年天貓雙十一銷售額;(注:數據保留小數點后一位)

3)把銷售超過100(十億元)的年份叫暢銷年,把銷售額超過200(十億元)的年份叫狂歡年,從2010年到2019年這十年的暢銷年中任取2個,求至少取到一個狂歡年的概率.

參考數據:

參考公式:

對于一組數據,其回歸直線的斜率和截距的最小二乘估計公式分別,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.

1)求橢圓C的標準方程;

2)設F為橢圓C的左焦點,T為直線上任意一點,過FTF的垂線交橢圓C于點PQ.

i)證明:OT平分線段PQ(其中O為坐標原點);

ii)當最小時,求點T的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為研究學生的身體素質與體育鍛煉時間的關系,對該校名高三學生平均每天體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)

將學生日均體育鍛煉時間在的學生評價為鍛煉達標

1)請根據上述表格中的統(tǒng)計數據填寫下面列聯(lián)表:

并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認為鍛煉達標與性別有關?

2)在鍛煉達標的學生中,按男女用分層抽樣方法抽出人,進行體育鍛煉體會交流.

i)求這人中,男生、女生各有多少人?

ii)從參加體會交流的人中,隨機選出人發(fā)言,記這人中女生的人數為,求的分布列和數學期望.

參考公式:,其中

臨界值表:

0.10

0.05

0.025

0.010

0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了預測下月產品銷售情況,找出了近7個月的產品銷售量(單位:萬件)的統(tǒng)計表:

月份代碼

1

2

3

4

5

6

7

銷售量(萬件)

但其中數據污損不清,經查證,.

(1)請用相關系數說明銷售量與月份代碼有很強的線性相關關系;

(2)求關于的回歸方程(系數精確到0.01);

(3)公司經營期間的廣告宣傳費(單位:萬元)(),每件產品的銷售價為10元,預測第8個月的毛利潤能否突破15萬元,請說明理由.(毛利潤等于銷售金額減去廣告宣傳費)

參考公式及數據:,相關系數,當時認為兩個變量有很強的線性相關關系,回歸方程中斜率和截距的最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某地區(qū)某種昆蟲產卵數和溫度有關.現收集了一只該品種昆蟲的產卵數(個)和溫度)的7組觀測數據,其散點圖如所示:

根據散點圖,結合函數知識,可以發(fā)現產卵數和溫度可用方程來擬合,令,結合樣本數據可知與溫度可用線性回歸方程來擬合.根據收集到的數據,計算得到如下值:

27

74

182

表中,

1)求和溫度的回歸方程(回歸系數結果精確到);

2)求產卵數關于溫度的回歸方程;若該地區(qū)一段時間內的氣溫在之間(包括),估計該品種一只昆蟲的產卵數的范圍.(參考數據:,,,,.)

附:對于一組數據,,,,其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在P地正西方向8kmA處和正東方向1kmB處各有一條正北方向的公路ACBD,現計劃在ACBD路邊各修建一個物流中心EF,為緩解交通壓力,決定修建兩條互相垂直的公路PEPF,設

為減少對周邊區(qū)域的影響,試確定EF的位置,使的面積之和最�。�

為節(jié)省建設成本,求使的值最小時AEBF的值.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷