用數(shù)學歸納法證明" n∈N*時, (n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)". 當n=k+1時要證明成立的等式應當是

[  ]

A.(K+1)(K+2)…(K+K)=2K·1·3·…·(2K-1)

B.(K+1)(K+2)…(K+1+K+1)=2K+1·1·3·…·(2K+1)

C.(K+2)(K+3)…(K+1+K)=2K+1·1·3·…·(2K-1)

D.(K+2)(K+3)…(2K+2)=2K+1·1·3·…·(2K+1)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明n(n+1)(2n+1)能被6整除時,由歸納假設推證n=k+1時命題成立,需將n=k+1時的原式表示成( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明(n∈N+)時,從“n=k到n=k+1”,等式左邊需增添的項是(    )

A.                         B.

C.                D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明“+++…+(n∈N*)”時,由“n=kn=k+1”,不等式左邊應添加的項是(  )

A.

B.+

C.+-

D.+--

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆山東省高二下學期3月月考理科數(shù)學試卷(解析版) 題型:選擇題

用數(shù)學歸納法證明(n+1)(n+2)(n+3)…(n+n)= (n∈N*)時,從n=k到n=k+1,左端需要增加的代數(shù)式為(   )

A.2k+1            B.2(2k+1)          C.           D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:選擇題

用數(shù)學歸納法證明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,從“k到k+1”左端需增乘的代數(shù)式為(  )

A.2k+1      B.2(2k+1)         C.            D..

 

查看答案和解析>>

同步練習冊答案