(本小題滿分12分)
已知甲、乙兩個工廠在今年的1月份的利潤都是6萬,且乙廠在2月份的利潤是8萬元.若甲、乙兩個工廠的利潤(萬元)與月份x之間的函數(shù)關系式分別符合下列函數(shù)模型:f(x)=a1x2—4x+6,g(x)=a2b2(a1a2,b2∈R).
(1)求函數(shù)f(x)與g(x)的解析式;
(2)求甲、乙兩個工廠今年5月份的利潤;
(3)在同一直角坐標系下畫出函數(shù)f(x)與g(x)的草圖,并根據(jù)草圖比較今年1—10月份甲、乙兩個工廠的利潤的大小情況.
(1) f(x)=4x2-4x+6. g(x)=×3x+5=3x-1+5.(2)甲、乙兩個工廠今年5月份的利潤相等.(3)作函數(shù)圖像如下:

x=1或x=5時,有f(x)=g(x); 當1<x<5時,有f(x)>g(x); 當5<x≤10時,有f(x)<g(x).

試題分析:(1)依題意:由f(1)=6,解得:a1=4, ∴f(x)=4x2-4x+6.
,有,
解得a2,b2=5,    ∴g(x)=×3x+5=3x-1+5.
(2)由(1)知甲廠在今年5月份的利潤為f(5)=86萬元,乙廠在今年5月份的利潤為g(5)=86萬元,故有f(5)=g(5),即甲、乙兩個工廠今年5月份的利潤相等.
(3)作函數(shù)圖像如下:

從圖中可以看出今年1—10月份甲、乙兩個工廠的利潤:
x=1或x=5時,有f(x)=g(x); 當1<x<5時,有f(x)>g(x); 當5<x≤10時,有f(x)<g(x).
點評:與函數(shù)有關的應用題,經(jīng)常涉及物價、路程、產(chǎn)值、環(huán)保等實際問題,也可涉及角度、面積、體積、造價的最優(yōu)化問題,解答這類問題的關鍵是確切建立相關函數(shù)解析式,然后應用函數(shù)、方程和不等式的有關知識加以綜合解答
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

定義在區(qū)間上的奇函數(shù),它在上的圖象是一條如右圖所示線段(不含點), 則不等式的解集為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,函數(shù)的圖象為折線,設,則函數(shù)的圖象為(    )


A.                    B.              C.              D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知函數(shù)的定義域為,對于任意的,都有,且當時,.
(1)求證:為奇函數(shù);   (2)求證:上的減函數(shù);

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù),的兩個極值點為,線段的中點為.
(1) 如果函數(shù)為奇函數(shù),求實數(shù)的值;當時,求函數(shù)圖象的對稱中心;
(2) 如果點在第四象限,求實數(shù)的范圍;
(3) 證明:點也在函數(shù)的圖象上,且為函數(shù)圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一家報刊推銷員從報社買進報紙的價格是每份0.20元,賣出的價格是每份0.30元,賣不完的還可以以每份0.08元的價格退回報社.在一個月(以30天計算)有20天每天可賣出400份,其余10天只能賣250份,但每天從報社買進報紙的份數(shù)都相同,問應該從報社買多少份才能使每月所獲得的利潤最大?并計算每月最多能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)=,數(shù)列滿足,。(12分)
(1)求數(shù)列的通項公式;
(2)令-+-+…+-;
(3)令=+++┅,若<對一切都成立,求最小的正整數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等式,定義映射,則(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共8分)
已知函數(shù)f(x)對任意實數(shù)x,y都有f(x+y)=f(x)+f(y),且當x>0時,f(x)>0,f(-1)=-2,求f(x)在[-2,1]上的值域。

查看答案和解析>>

同步練習冊答案