【題目】甲、乙兩所學(xué)校高三年級分別有600人,500人,為了解兩所學(xué)校全體高三年級學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計表如下:
甲校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 3 | 4 | 7 | 14 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 17 | x | 4 | 2 |
乙校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 1 | 2 | 8 | 9 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 10 | 10 | y | 4 |
(1)計算x,y的值;
(2)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認為兩所學(xué)校的數(shù)學(xué)成績有差異;
(3)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,現(xiàn)從已抽取的110人中抽取兩人,要求每校抽1人,所抽的兩人中有人優(yōu)秀的條件下,求乙校被抽到的同學(xué)不是優(yōu)秀的概率.
甲校 | 乙校 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
參考公式:K2= ,其中n=a+b+c+d.
臨界值表:
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
【答案】
(1)解:從甲校抽取110× =60(人),
從乙校抽取110× =50(人),故x=9,y=6
(2)解:表格填寫如下:
甲校 | 乙校 | 總計 | |
優(yōu)秀 | 15 | 20 | 35 |
非優(yōu)秀 | 45 | 30 | 75 |
總計 | 60 | 50 | 110 |
k2= ,
故有90%的把握認為兩個學(xué)校的數(shù)學(xué)成績有差異
(3)解:設(shè)兩校各取一人,有人優(yōu)秀為事件A,乙校學(xué)生不優(yōu)秀為事件B,根據(jù)條件概率,則所求事件的概率=
【解析】(1)根據(jù)條件知道從甲校和乙校各自抽取的人數(shù),做出頻率分布表中的未知數(shù);(2)根據(jù)所給的條件寫出列聯(lián)表,根據(jù)列聯(lián)表做出觀測值,把觀測值同臨界值進行比較,得到有90%的把握認為兩個學(xué)校的數(shù)學(xué)成績有差異;(3)設(shè)兩校各取一人,有人優(yōu)秀為事件A,乙校學(xué)生不優(yōu)秀為事件B,根據(jù)條件概率,可得結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù)的圖像經(jīng)過點,且在區(qū)間單調(diào)遞減,又知函數(shù)為偶函數(shù),則關(guān)于的不等式的解為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx。
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求證:當x>0時,f(x)≥l-;
(3)若x-1>alnx對任意x>1恒成立,求實數(shù)a的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當時函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域為,解不等式.
【答案】(1)奇函數(shù)(2)增函數(shù)(3)
【解析】試題分析:(1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)與f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。(2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。
試題解析:(1)函數(shù)為奇函數(shù).證明如下:
定義域為
又
為奇函數(shù)
(2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:
任取,則
,
即
故在(-1,1)上為增函數(shù)
(3)由(1)、(2)可得
則
解得:
所以,原不等式的解集為
【點睛】
(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)與f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。
(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號,下結(jié)論五個步驟。
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù).
(1)若的定義域和值域均是,求實數(shù)的值;
(2)若在區(qū)間上是減函數(shù),且對任意的,都有,求實數(shù)的取值范圍;
(3)若,且對任意的,都存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的左、右焦點分別是,且點在上,拋物線與橢圓交于四點
(I)求的方程;
(Ⅱ)試探究坐標平面上是否存在定點,滿足?(若存在,求出的坐標;若不存在,需說明理由.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)系式中正確的是( 。
A. sin11°<cos10°<sin168° B. sin168°<sin11°<cos10°
C. sin11°<sin168°<cos10° D. sin168°<cos10°<sin11°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,平面四邊形ABCD中AD∥BC,∠BAD為二面角B﹣PA﹣D一個平面角.
(1)若四邊形ABCD是菱形,求證:BD⊥平面PAC;
(2)若四邊形ABCD是梯形,且平面PAB∩平面PCD=l,問:直線l能否與平面ABCD平行?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com