如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.

(1) 求D、C之間的距離;
(2) 求CD與面ABC所成的角的大小;
(3) 求證:對于AD上任意點H,CH不與面ABD垂直。

(1)|CD|==
(2) =; (3) CH不與面ABD垂直。

解析試題分析:依題意,ABD=90o,建立如圖的坐標(biāo)系使得△ABC在yoz平面上,△ABD與△ABC成30o的二面角, DBY=30o,又AB=BD=2,  A(0,0,2),B(0,0,0),
C(0,,1),D(1,,0),
    (1)|CD|==……… 5分
(2)x軸與面ABC垂直,故(1,0,0)是面ABC的一個法向量。
設(shè)CD與面ABC成的角為,而= (1,0,-1),
sin==
[0,],=; 8分
(3) 設(shè)=t= t(1,,-2)= (t,t,-2 t),
=+=(0,-,1) +(t,t,-2 t) = (t,t-,-2 t+1),
,則 (t,t-,-2 t+1)·(0,0,2)="0" 得t=,   10分
此時=(,-,0),
=(1,,0),·=-=-10, 不垂直,
即CH不可能同時垂直BD和BA,即CH不與面ABD垂直。 12分
考點:本題主要考查立體幾何中的垂直關(guān)系,角、距離的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題利用空間向量,簡化了證明過程,但對計算能力要求較高。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,棱柱ABCD—的底面為菱 形 ,AC∩BD=O側(cè)棱BD,F的中點.

(Ⅰ)證明:平面;
(Ⅱ)證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,側(cè)棱底面,底面為矩形,的上一點,且為PC的中點.

(Ⅰ)求證:平面AEC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正方體ABCD—A1B1C1D1中,E為AB中點,F(xiàn)為正方形BCC1B1的中心.

(1)求直線EF與平面ABCD所成角的正切值;
(2)求異面直線A1C與EF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形中,為正三角形,,,交于點.將沿邊折起,使點至點,已知與平面所成的角為,且點在平面內(nèi)的射影落在內(nèi).

(Ⅰ)求證:平面;
(Ⅱ)若已知二面角的余弦值為,求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在四棱錐中,,,分別是的中點.

(Ⅰ)求證;
(Ⅱ)求證
(Ⅲ)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)在三棱錐中,是邊長為4的正三角形,,分別是、的中點;

(1)證明:平面平面
(2)求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,四邊形是菱形,,的中點.

(1)求證:;  (2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,在三棱錐DABC中,已知△BCD是正三角形,AB⊥平面BCD,ABBCaEBC的中點,F在棱AC上,且AF=3FC

(1)求三棱錐DABC的表面積;
(2)求證AC⊥平面DEF
(3)若MBD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.

查看答案和解析>>

同步練習(xí)冊答案