【題目】設(shè)a,b,c為實數(shù),f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分別為集合S,T 的元素個數(shù),則下列結(jié)論不可能的是( )
A.{S}=1且{T}=0B.{S}=1且{T}=1C.{S}=2且{T}=2D.{S}=2且{T}=3
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓,右頂點是,離心率為.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(不同于點),若,求證:直線過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面幾種推理是類比推理的( )
A. 兩條直線平行,同旁內(nèi)角互補,如果和是兩條平行直線的同旁內(nèi)角,則
B. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)
C. 某校高二級有20個班,1班有51位團員,2班有53位團員,3班有52位團員,由此可以推測各班都超過50位團員.
D. 一切偶數(shù)都能被2整除,是偶數(shù),所以能被2整除.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學史上的一個偉大成就,在“楊輝三角”中,第行的所有數(shù)字之和為,若去除所有為1的項,依次構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前15項和為( )
A. 110B. 114C. 124D. 125
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在上是減函數(shù),在上是增函數(shù)若函數(shù),利用上述性質(zhì),
Ⅰ當時,求的單調(diào)遞增區(qū)間只需判定單調(diào)區(qū)間,不需要證明;
Ⅱ設(shè)在區(qū)間上最大值為,求的解析式;
Ⅲ若方程恰有四解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省從2021年開始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學、生物、地理四門中選兩科,按照等級賦分計入高考成績,等級賦分規(guī)則如下:從2021年夏季高考開始,高考政治、化學、生物、地理四門等級考試科目的考生原始成績從高到低劃分為五個等級,確定各等級人數(shù)所占比例分別為,,,,,等級考試科目成績計入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法分別轉(zhuǎn)換到、、、、五個分數(shù)區(qū)間,得到考生的等級分,等級轉(zhuǎn)換分滿分為100分.具體轉(zhuǎn)換分數(shù)區(qū)間如下表:
等級 | |||||
比例 | |||||
賦分區(qū)間 |
而等比例轉(zhuǎn)換法是通過公式計算:
其中,分別表示原始分區(qū)間的最低分和最高分,、分別表示等級分區(qū)間的最低分和最高分,表示原始分,表示轉(zhuǎn)換分,當原始分為,時,等級分分別為、
假設(shè)小南的化學考試成績信息如下表:
考生科目 | 考試成績 | 成績等級 | 原始分區(qū)間 | 等級分區(qū)間 |
化學 | 75分 | 等級 |
設(shè)小南轉(zhuǎn)換后的等級成績?yōu)?/span>,根據(jù)公式得:,
所以(四舍五入取整),小南最終化學成績?yōu)?7分.
已知某年級學生有100人選了化學,以半期考試成績?yōu)樵汲煽冝D(zhuǎn)換本年級的化學等級成績,其中化學成績獲得等級的學生原始成績統(tǒng)計如下表:
成績 | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人數(shù) | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)從化學成績獲得等級的學生中任取2名,求恰好有1名同學的等級成績不小于96分的概率;
(2)從化學成績獲得等級的學生中任取5名,設(shè)5名學生中等級成績不小于96分人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年11月3日20點43分我國長征運載火箭在海南文昌發(fā)射中心成功發(fā)射,它被公認為我國已從航天大國向航天強國邁進的重要標志.長征五號運載火箭的設(shè)計生產(chǎn)采用很多新材料,甲工廠承擔了某種材料的生產(chǎn),并以千克/時的速度勻速生產(chǎn)(為保證質(zhì)量要求),每小時可消耗材料千克,已知每小時生產(chǎn)1千克該產(chǎn)品時,消耗材料10千克.
(1)設(shè)生產(chǎn)千克該產(chǎn)品,消耗材料千克,試把表示為的函數(shù).
(2)要使生產(chǎn)1000千克該產(chǎn)品消耗的材料最少,工廠應選取何種生產(chǎn)速度?并求消耗的材料最少為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,求使不等式對一切都成立的正整數(shù)的最大值.
(3)設(shè),是否存在,使得成立?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com