已知α是第一象限角,sinα=
5
5
,tan(β-α)=-
1
3
,則tan(β-2α)的值為
 
考點:二倍角的余弦,兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:利用三角函數(shù)基本關系式可得tanα,再利用兩角和差的正切公式即可得出.
解答: 解:∵α是第一象限角,sinα=
5
5

∴cosα=
1-sin2α
=
1-(
5
5
)2
=
2
5
5
,
tanα=
sinα
cosα
=
1
2
,
又tan(β-α)=-
1
3
,
∴tan(β-2α)=tan[(β-α)-α]=
tan(β-α)-tanα
1+tan(β-α)tanα
=
-
1
3
-
1
2
1+(-
1
3
1
2
=-1.
故答案為:-1.
點評:本題考查了三角函數(shù)基本關系式、兩角和差的正切公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某地區(qū)統(tǒng)一組織A,B兩校舉行數(shù)學競賽,考試后分別從A,B兩校隨機抽取100名學生的成績進行統(tǒng)計,得到下面的結(jié)果:
分數(shù)段[50,60)[60,70)[70,80)[80,90)[90,100)
A校頻數(shù)82042228
B校頻數(shù)412423210
(Ⅰ)若考試分數(shù)大于或等于80分為優(yōu)秀,分別估計A,B兩校的優(yōu)秀率;
(Ⅱ)已知B校用這次成績對學生進行量化評估,每一個學生的量化評估得分y,與其考試分數(shù)t的關系為y=
-2,t<60
2,60≤t<80
4,t≥80
,求B校一個學生量化評估成績大于0的概率和該校學生的平均量化評估成績.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A,B,C三人進行乒乓球比賽,優(yōu)勝者按以下規(guī)則決出:
(Ⅰ)三人中兩人進行比賽,勝出者與剩下的一人進行比賽,直到出現(xiàn)兩連勝者,則此兩連勝者唄判定為優(yōu)勝者,比賽結(jié)束;
(Ⅱ)在每次比賽中,無平局,必須決出勝負.
已知A勝B的概率是
2
3
,C勝A的概率是
1
2
,C勝B的概率是
1
3
,第一場比賽在A與C中進行
(1)分別求出第二場、第三場、第四場比賽后C為優(yōu)勝者的概率;
(2)記第3n-1場比賽后C為優(yōu)勝者的概率為pn,第3n場比賽后C為優(yōu)勝者的概率為qn,第3n+1場比賽后C為優(yōu)勝者的概率為rn,n∈N*試求pn,qn,rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當實數(shù)x,y滿足約束條件
x≥0
y≥x
2x+y+k≤0
(其中k為常數(shù)且k<0)時,
y+1
x
的最小值為
3
2
,則實數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(x+1)2014=a0+a1(x-1)+a2(x-1)2+…+a2014(x-1)2014,則a0+a1+a2+…a2014=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設n∈N*,f(n)=1+
1
2
+
1
3
+…
1
n
,由計算得f(2)=
3
2
,f(4)>2,f(8)>
5
2
,f(32)>
7
2
,觀察上述結(jié)果,可推出一般的結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程x|x|+y|y|=1的曲線為函數(shù)y=f(x)的圖象,對于函數(shù)y=f(x)有如下結(jié)論:
①函數(shù)y=f(x)在R上單調(diào)遞減;
②函數(shù)y=f(x)的值域為[-1,1];
③函數(shù)y=f(x)的圖象關于函數(shù)y=x對稱;
④函數(shù)y=g(x)和y=f(x)的圖象關于原點對稱,則函數(shù)y=g(x)的圖象就是方程x|x|-y|y|=1表示的曲線.
其中正確的結(jié)論是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某鮮花店對一個月的鮮花銷售數(shù)量(單位:支)進行統(tǒng)計,統(tǒng)計時間是4月1日至4月30日,5天一組分組統(tǒng)計,繪制了如圖的鮮花銷售數(shù)量頻率分布直方圖.已知從左到右各長方形的高的比為2:3:4:6:4:1,且第二組的頻數(shù)為180,那么該月共銷售出的鮮花數(shù)(單位:支)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平行四邊形ABCD中,
AE
=
EB
CF
=2
FB
,連接CE、DF相交于點M,若
AM
AB
AD
,則λ與μ的乘積
 

查看答案和解析>>

同步練習冊答案