已知數(shù)列的前項(xiàng)和滿足
(1)寫出數(shù)列的前3項(xiàng)
(2)求數(shù)列的通項(xiàng)公式.

(1),;(2)

解析試題分析:(1)寫出數(shù)列的前3項(xiàng),由,依次令,即可求出的值;(2)求數(shù)列的通項(xiàng)公式,這是已知的關(guān)系,求,可利用來(lái)求,注意對(duì)的討論,本題(1)已討論,故當(dāng)時(shí),有,得,可構(gòu)造等比數(shù)列,求出數(shù)列的通項(xiàng)公式,從而可得數(shù)列的通項(xiàng)公式.
試題解析:(1)由,得.
,得,
,得 
(2)當(dāng)時(shí),有,即   ①
,則,與①比較得,
是以為首項(xiàng),以2為公比的等比數(shù)列.
,故
考點(diǎn):等比數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列,,,已知,,,,).
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:對(duì)任意,為定值;
(3)設(shè)為數(shù)列的前項(xiàng)和,若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列{an}中,a2=32,a8,an+1<an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相應(yīng)的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-1;數(shù)列{bn}滿足bn-1bnbnbn-1(n≥2,n∈N*),b1=1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+1,數(shù)列{bn}是首項(xiàng)為1,公比為b的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量p=(an,2n),q=(2n+1,-an+1),n∈N*,pq垂直,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log2an+1,求數(shù)列{an·bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足8Sna+4an+3(n∈N*),且a1,a2,a7依次是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(2)是否存在常數(shù)a>0且a≠1,使得數(shù)列{an-logabn}(n∈N*)是常數(shù)列?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,且
(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列是等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S1,S3,S2成等差數(shù)列.
(1)求{an}的公比q;
(2)若a1-a3=3,求Sn.

查看答案和解析>>

同步練習(xí)冊(cè)答案