【題目】已知拋物線,斜率為的直線交拋物線于,兩點(diǎn),當(dāng)直線過點(diǎn)時(shí),以為直徑的圓與直線相切.
(1)求拋物線的方程;
(2)與平行的直線交拋物線于,兩點(diǎn),若平行線,之間的距離為,且的面積是面積的倍(O為坐標(biāo)原點(diǎn)),求和的方程.
【答案】(1);(2),或者,.
【解析】
(1)設(shè)直線AB方程為,代入得,
利用弦長(zhǎng)公式求得弦長(zhǎng),結(jié)合以AB為直徑的圓與直線x=-1相切列式求得p,則拋物線方程可求;
(2)O到直線l1的距離為,寫出三角形AOB的面積,同理寫出三角形COD的面積,結(jié)合△OCD的面積是△OAB面積的倍求b,則直線l1和l2的方程可求.
(1)設(shè)直線AB方程為,
代入得,
∴,
設(shè),
∴,
,
當(dāng)時(shí),,AB的中點(diǎn)為,
依題意可知,解之得,
∴拋物線方程為.
(2)由(1)得O到直線的距離為,
∴.
∵平行線之間的距離為,
∴直線CD的方程為,
∴.
依題意可知,即,
化簡(jiǎn)得,
∴,代入(1)中均成立,
∴或者.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在疫情這一特殊時(shí)期,教育行政部門部署了“停課不停學(xué)”的行動(dòng),全力幫助學(xué)生在線學(xué)習(xí).復(fù)課后進(jìn)行了摸底考試,某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生這次摸底考試的數(shù)學(xué)成績(jī)與在線學(xué)習(xí)數(shù)學(xué)時(shí)長(zhǎng)之間的相關(guān)關(guān)系,對(duì)在校高三學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查.知道其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)是不超過1小時(shí)的,得到了如下的等高條形圖:
(1)是否有的把握認(rèn)為“高三學(xué)生的這次摸底考試數(shù)學(xué)成績(jī)與其在線學(xué)習(xí)時(shí)長(zhǎng)有關(guān)”;
(2)將頻率視為概率,從全校高三學(xué)生這次數(shù)學(xué)成績(jī)超過120分的學(xué)生中隨機(jī)抽取10人,求抽取的10人中每天在線學(xué)習(xí)時(shí)長(zhǎng)超過1小時(shí)的人數(shù)的數(shù)學(xué)期望與方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線不過原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.
(1)若,點(diǎn)在橢圓上,、分別為橢圓的兩個(gè)焦點(diǎn),求的范圍;
(2)若過點(diǎn),射線與橢圓交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)直線斜率;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的解集;
(Ⅱ)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,且,,
(1)求證:;
(2)在線段上,是否存在一點(diǎn),使得二面角的大小為,如果存在,求與平面所成的角的正弦值,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C上每一點(diǎn)到直線l:的距離比它到點(diǎn)的距離大1.
(1)求曲線C的方程;
(2)曲線C任意一點(diǎn)處的切線m(不含x軸)與直線相交于點(diǎn)M,與直線l相交于點(diǎn)N,證明:為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,分別為,的中點(diǎn)是由繞直線旋轉(zhuǎn)得到,連結(jié),,.
(1)證明:平面;
(2)若,棱上是否存在一點(diǎn),使得?若存在,確定點(diǎn) 的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α,β是空間中的兩個(gè)平面,l,m是兩條直線,則使得α∥β成立的一個(gè)充分條件是( )
A.lα,mβ,l∥mB.l⊥m,l∥α,m⊥β
C.lα,mα,l∥β,m∥βD.l∥m,l⊥α,m⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com