已知函數(shù),f(x)=cos(-2ωx)+2sin2ωx(ω>0)的最小正周期為π.
(I )求函數(shù)y=f(x)的最值及其單調(diào)遞增區(qū)間;
(II )函數(shù)f(x)的圖象可以由函數(shù)y=2sin2x(x∈R)的圖象經(jīng)過(guò)怎樣的變換得到?
【答案】分析:(I)利用降次升角公式,及和差角公式(輔助角公式),可將函數(shù)y=f(x)的解析式化為正弦型函數(shù)的形式,結(jié)合函數(shù)y=f(x)的最小正周期為π,可得ω的值,進(jìn)而結(jié)合正弦函數(shù)的圖象和性質(zhì),可得答案.
(II)根據(jù)函數(shù)圖象的變換法則,結(jié)合變換前后函數(shù)的解析式,可分析出函數(shù)變換的方法.
解答:解:(I)∵f(x)=cos(-2ωx)+2sin2ωx=sin2ωx+1-cos2ωx=2sin(2ωx-)+1
又∵ω>0,f(x)的最小正周期為π
故ω=1
故f(x)=2sin(2x-)+1
∵A=2,B=1
故函數(shù)y=f(x)的最大值為3,最小值為-1
由2kπ-≤2x-≤2kπ+
kπ-≤x≤kπ+,k∈Z
故函數(shù)y=f(x)的單調(diào)遞增區(qū)間為[kπ-,kπ+],(k∈Z)
(II)將函數(shù)y=2sin2x(x∈R)的圖象上的所有點(diǎn)向右平移個(gè)單位長(zhǎng)度
得到函數(shù)y=2sin2(x-)=2sin(2x-)(x∈R)的圖象;
再將函數(shù)y=2sin2(x-)=2sin(2x-)(x∈R)的圖象上的所有點(diǎn)向上平移1個(gè)單位長(zhǎng)度
得到函數(shù)f(x)=2sin(2x-)+1的圖象.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是兩角差的正弦函數(shù),二倍角公式,正弦型函數(shù)的單調(diào)性,周期性,函數(shù)圖象的變換,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的反函數(shù).定義:若對(duì)給定的實(shí)數(shù)a(a≠0),函數(shù)y=f(x+a)與y=f-1(x+a)互為反函數(shù),則稱y=f(x)滿足“a和性質(zhì)”;若函數(shù)y=f(ax)與y=f-1(ax)互為反函數(shù),則稱y=f(x)滿足“a積性質(zhì)”.
(1)判斷函數(shù)g(x)=x2+1(x>0)是否滿足“1和性質(zhì)”,并說(shuō)明理由;
(2)求所有滿足“2和性質(zhì)”的一次函數(shù);
(3)設(shè)函數(shù)y=f(x)(x>0)對(duì)任何a>0,滿足“a積性質(zhì)”.求y=f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、已知函數(shù)y=f(x)和y=g(x)在[-2,2]的圖象如圖所示,則方程f[g(x)]=0有且僅有
6
個(gè)根;方程f[f(x)]=0有且僅有
5
個(gè)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海)已知函數(shù)y=f(x)的圖象是折線段ABC,其中A(0,0)、B(
1
2
,5)、C(1,0),函數(shù)y=xf(x)(0≤x≤1)的圖象與x軸圍成的圖形的面積為
5
4
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x),x∈R,有下列4個(gè)命題:
①若f(1+2x)=f(1-2x),則y=f(x)的圖象關(guān)于直線x=1對(duì)稱;
②y=f(x-2)與y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱;
③若y=f(x)為偶函數(shù),且y=f(2+x)=-f(x),則y=f(x)的圖象關(guān)于直線x=2對(duì)稱;
④若y=f(x)為奇函數(shù),且f(x)=f(-x-2),則y=f(x)的圖象關(guān)于直線x=1對(duì)稱.
其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x3+1.設(shè)f(x)的反函數(shù)是y=g(x),則g(-28)=
-3
-3

查看答案和解析>>

同步練習(xí)冊(cè)答案