【題目】中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點,若點的直角坐標(biāo)為,求的最小值.
【答案】(1);(2).
【解析】
試題分析:(1)把方程變?yōu)?/span>,然后由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)題中給出的直線的參數(shù)方程是過點的標(biāo)準(zhǔn)參數(shù)方程,參數(shù)表示直線上的點到點距離的絕對值,因此可把直線參數(shù)方程代入圓的直角坐標(biāo)方程,(因為在圓內(nèi)),而,再由三角函數(shù)的性質(zhì)可得最值.
試題解析:(1)由得,化為直角坐標(biāo)方程為,即.
(2)將的參數(shù)方程代入圓的直角坐標(biāo)方程,得,
由,故可設(shè)是上述方程的兩根,
所以,又直線過點,故結(jié)合的幾何意義得
所以的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面幾何中,與三角形的三條邊所在直線的距離相等的點有4個,類似的,在立體幾何中,與四面體的四個面所在平面的距離相等的點有( )
A.1個B.5個C.7個D.9個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出如下命題:
①命題 “在中,若,則” 的逆命題為真命題;
②若動點到兩定點的距離之和為,則動點的軌跡為線段;
③若為假命題,則都是假命題;
④設(shè),則“”是“”的必要不充分條件
⑤若實數(shù)成等比數(shù)列,則圓錐曲線的離心率為;
其中所有正確命題的序號是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國天氣網(wǎng)2016年3月4日晚六時通過手機(jī)發(fā)布的3月5日通州區(qū)天氣預(yù)報的折線圖(如圖),其中上面的折線代表可能出現(xiàn)的從高氣溫,下面的折線代表可能出現(xiàn)的最低氣溫.
(Ⅰ)指出最高氣溫與最低氣溫的相關(guān)性;
(Ⅱ)估計在10:00時最高氣溫和最低氣溫的差;
(Ⅲ)比較最低氣溫與最高氣溫方差的大。ńY(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)若函數(shù),討論函數(shù)的單調(diào)性;
(3)若(2)中函數(shù)有兩個極值點,且不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象過點,且在點處的切線方程.
(1)求函數(shù)的解析式;
(2)求函數(shù)與的圖象有三個交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,
直線與橢圓的一個交點為,點是橢圓上的任意—點,延長交橢圓于點,連接.
(1)求橢圓的方程;
(2)求的內(nèi)切圓的最大周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)若,求在區(qū)間 上的最小值;
(3)若函數(shù)有兩個極值點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三個元素,分別作為一個三位數(shù)的個位數(shù),十位數(shù)和百位數(shù),記這個三位數(shù)為a,現(xiàn)將組成a的三個數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=219,則I(a)=129,D(a)=921),閱讀如圖所示的程序框圖,運行相應(yīng)的程序,任意輸入一個a,則輸出b的值為( )
A. 792 B. 693 C. 594 D. 495
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com