在△ABC中,已知∠BAC=150°,且
AB
AC
=-4
3
,設(shè)D是△ABC內(nèi)部的一點,△DAB、△DBC、△DCA的面積依次為m、n、p,則當(dāng)p=1時,
1
m
+
4
n
的最小值為(  )
A、3B、5C、7D、9
考點:平面向量數(shù)量積的運算
專題:計算題,解三角形,不等式的解法及應(yīng)用,平面向量及應(yīng)用
分析:運用數(shù)量積的定義,求得|
AB
|•|
AC
|=8,再由三角形的面積公式,求得△ABC的面積,再由m+n=1,則
1
m
+
4
n
=(m+n)(
1
m
+
4
n
),化簡整理,運用基本不等式即可得到最小值.
解答: 解:∠BAC=150°,且
AB
AC
=-4
3
,
則|
AB
|•|
AC
|•cos150°=-
3
2
|
AB
|•|
AC
|=-4
3
,
即有|
AB
|•|
AC
|=8,
則有S△ABC=
1
2
|
AB
|•|
AC
|•sin150°=
1
2
×8×
1
2
=2,
由于m+n+p=2,p=1,則m+n=1,
1
m
+
4
n
=(m+n)(
1
m
+
4
n
)=5+(
n
m
+
4m
n

≥5+2
n
m
4m
n
=9.
當(dāng)且僅當(dāng)n=2m=
2
3
,取得最小值9.
故選D.
點評:本題考查平面向量的數(shù)量積的定義,考查三角形的面積公式以及基本不等式的運用:求最值,考查運算能力,屬于中檔題和易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
lnx
x
+2x,0<a<b<e,則( 。
A、f(a)>f(b)
B、f(a)<f(b)
C、f(a)=f(b)
D、f(a)f(b)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(cos
3x
2
,sin
3x
2
),
b
=(cos
x
2
,-sin
x
2
),其中x∈[-
π
2
,
π
2
].求證:(
a
+
b
⊥(
a
-
b
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的直徑,AB=2,點C在圓O上,且∠ABC=60°,V到圓O所在的平面的距離為3,且VC垂直于圓O所在的平面,D,E分別是VA,VC的中點.
(1)求證:DE⊥平面VBC;
(2)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b是兩條不同的直線,α、β是兩個不同的平面,則下面四個命題中錯誤的是( 。
A、若a⊥b,a⊥α,b?α,則b∥α
B、若a⊥b,a⊥α,b⊥β,則α⊥β
C、若a⊥β,α⊥β,則a∥α或a?α
D、若 a∥α,α⊥β,則a⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)g(x)滿足g(x+2)=g(2-x),f(x)=
g(x)(x≠2)
1(x=2)
,若關(guān)于x的方程f2(x)+bf(x)+c=0有三個不同的實數(shù)解x1,x2,x3,則x1+x2+x3=( 。
A、0B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若連續(xù)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(2-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( 。
A、f(x)有極大值f(3)和極小值f(2)
B、f(x)有極大值f(-3)和極小值f(2)
C、f(x)有極大值f(3)和極小值f(-3)
D、f(x)有極大值f(-3)和極小值f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=1,an+1=3Sn(n∈N*),則下列結(jié)論正確的是(  )
A、數(shù)列是{an}等比數(shù)列
B、數(shù)列a2,a3,…,an是等比數(shù)列
C、數(shù)列是{an}等差數(shù)列
D、數(shù)列a2,a3,…,an是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角坐標(biāo)系xOy中,直線l的參數(shù)方程:
x=
2
2
t-
2
y=
2
2
t
(t為參數(shù)),以直角坐標(biāo)系的原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,則以極點為圓心與直線l相切的圓的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊答案