如圖,在組合體中,ABCD—A1B1C1D1是一個長方體,P—ABCD是一個四棱錐.AB=2,BC=3,點P平面CC1D1D,且PC=PD=.
(1)證明:PD平面PBC;
(2)求PA與平面ABCD所成的角的正切值;
(3)若,當a為何值時,PC//平面.
(1)先證,再證,根據(jù)線面垂直的判定定理可證結(jié)論
(2)(3)當時,
或建立空間直角坐標系可以用空間向量解決
解析試題分析:方法一:(1)因為,,
所以為等腰直角三角形,所以.
因為是一個長方體,所以,
而,所以,所以.
因為垂直于平面內(nèi)的兩條相交直線和,
由線面垂直的判定定理,可得.
(2)過點在平面作于,連接.
因為,所以,
所以就是與平面所成的角.
因為,,所以.
所以與平面所成的角的正切值為.
(3)當時,.
當時,四邊形是一個正方形,所以,
而,所以,所以.
而,與在同一個平面內(nèi),所以.
而,所以,所以.
方法二:(1)證明:如圖建立空間直角坐標系,設(shè)棱長,
則有,,,.
于是,,,
所以,.
所以垂直于平面內(nèi)的兩條相交直線和,
由線面垂直的判定定理,可得.
(2)解:,所以,而平面的一個法向量為.
所以.所以
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.
(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點,問在棱AB上是否存在一點E,使DE∥平面AB1C1?若存在,試確定點E的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
如圖,斜三棱柱中,側(cè)面底面ABC,側(cè)面是菱形,,E、F分別是、AB的中點.
求證:(1)EF∥平面;
(2)平面CEF⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)在直三棱柱(側(cè)棱垂直底面)中,,,且異面直線與所成的角等于.
(Ⅰ)求棱柱的高;
(Ⅱ)求與平面所成的角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱錐中,底面,點,分別在棱上,且
(Ⅰ)求證:平面;
(Ⅱ)當為的中點時,求與平面所成的角的正弦值;
(Ⅲ)是否存在點使得二面角為直二面角?若存在,請確定點E的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐中,底面是邊長為的正方形, ,且點滿足 .
(1)證明:平面 .
(2)在線段上是否存在點,使得平面?若存在,確定點的位置,若不存在請說明理由 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分為10分)
在四面體ABCD中作截面PQR,若PQ,CB的延長線交于M;RQ,DB的延長線交于N;RP,DC的延長線交于K,求證:M、N、K三點共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com