【題目】已知奇函數(shù)f(x)是定義在(﹣2,2)上的減函數(shù),則不等式f( )+f(2x﹣1)>0的解集是(
A.(﹣∞,
B.[﹣ ,+∞)
C.(﹣6,﹣
D.(﹣ ,

【答案】D
【解析】解:f(x)是奇函數(shù),
所以不等式f( )+f(2x﹣1)>0等價(jià)于
f( )>﹣f(2x﹣1)=f(1﹣2x),
又f(x)是定義在(﹣2,2)上的減函數(shù),
所以 ,
,
解得﹣ <x<
則不等式的解集為(﹣ , ).
故選:D.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí)點(diǎn),需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需的煤、電和產(chǎn)值如下表所示.

用煤(噸)

用電(千瓦)

產(chǎn)值(萬元)

甲產(chǎn)品

3

50

12

乙產(chǎn)品

7

20

8

但國家每天分配給該廠的煤、電有限,每天供煤至多47噸,供電至多300千瓦,問該廠如何安排生產(chǎn),使得該廠日產(chǎn)值最大?最大日產(chǎn)值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=2sin( )(﹣2<x<10)的圖象與x軸交于點(diǎn)A,過點(diǎn)A的直線l與函數(shù)的圖象交于B、C兩點(diǎn),則( + =(
A.﹣32
B.﹣16
C.16
D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B是拋物線W: 上的兩個(gè)動(dòng)點(diǎn),F是拋物線W的焦點(diǎn), 是坐標(biāo)原點(diǎn),且恒有.

(1)若直線OA的傾斜角為時(shí),求線段AB的中點(diǎn)C的坐標(biāo);

(2)求證直線AB經(jīng)過一定點(diǎn),并求出此定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣mx,
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若函數(shù)g(x)=f(x)﹣lnx+x2存在兩個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若函數(shù)在區(qū)間(其中)上存在極值,求實(shí)數(shù)的取值范圍.

Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

Ⅲ)求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證數(shù)列{an}是等差數(shù)列;
(2)若數(shù)列{ }的前n項(xiàng)和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, 、為銳角,角、所對(duì)的邊分別為、,且,

Ⅰ)求的值.

Ⅱ)若,求、、的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是(
A.如果命題“¬p”與命題“p∨q”都是真命題,那么命題q一定是真命題
B.命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
C.若命題p:?x0∈R,x02+2x0﹣3<0,則?p:?x∈R,x2+2x﹣3≥0
D.“sinθ= ”是“θ=30°”的充分不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案