(2011•浙江)已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1為a(a∈R)設(shè)數(shù)列的前n項(xiàng)和為Sn,且,,成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及Sn;
(2)記An=+++…+,Bn=++…+,當(dāng)n≥2時(shí),試比較An與Bn的大小.

(1)an=na   
(2)當(dāng)a>0時(shí),An<Bn;當(dāng)a<0時(shí),An>Bn

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)在數(shù)列中,,
(1)設(shè).證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,且,,,
(1)求,的通項(xiàng)公式.(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,向量,()滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式為),若,)成等差數(shù)列,求的值;
(3).如果等比數(shù)列滿足,公比滿足,且對(duì)任意正整數(shù),仍是該數(shù)列中的某一項(xiàng),求公比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)滿足以下兩個(gè)條件得有窮數(shù)列階“期待數(shù)列”:
,②.
(1)若等比數(shù)列階“期待數(shù)列”,求公比;
(2)若一個(gè)等差數(shù)列既為階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記階“期待數(shù)列”的前項(xiàng)和為.
)求證:;
)若存在,使,試問數(shù)列是否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{}是等差數(shù)列,數(shù)列{}的前項(xiàng)和滿足,,
。
(1)求數(shù)列{}和{}的通項(xiàng)公式:
(2)設(shè)為數(shù)列{}的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列為等差數(shù)列,且,,數(shù)列的前項(xiàng)和為,
(1)求數(shù)列,的通項(xiàng)公式; 
(2)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足奇數(shù)項(xiàng)成等差數(shù)列,而偶數(shù)項(xiàng)成等比數(shù)列,且成等差數(shù)列,數(shù)列的前項(xiàng)和為
(1)求通項(xiàng);
(2)求

查看答案和解析>>

同步練習(xí)冊(cè)答案