已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052208142818757772/SYS201205220815472656191418_ST.files/image002.png">,且滿足條件:①,②③當(dāng).
(1)求證:函數(shù)為偶函數(shù);
(2)討論函數(shù)的單調(diào)性;
(3)求不等式的解集
解:(1)在①中令x=y=1, 得f(1)= f(1)+ f(1) f(1)=0,
令x=y=-1, 得f(1)= f(-1)+ f(-1) f(-1)=0,
再令y=-1, 得f(-x)= f(x)+ f(-1) f(x), ∴f(x)為偶函 數(shù);
(2)在①中令
先討論上的單調(diào)性, 任取x1http://www.zxxk.com/x2,設(shè)x2>x1>0,
由③知:>0,∴f(x2)>f(x1), ∴f(x)在(0,+∞)上是增函數(shù),
∵偶函數(shù)圖象關(guān)于y軸對(duì)稱 ,∴f(x)在(-∞,0)上是減函數(shù);[來源:Z+xx+k.Com]
(3)∵f[x(x-3)]= f(x)+ f(x-3)≤2, 由①②得2=1+1= f(2)+ f(2)= f(4)= f(-4),
1)若x(x-3)>0 , ∵f(x)在(0,+∞)上為增函數(shù),
由f[x(x-3)] ≤f(4) 得
2)若x(x-3)<0, ∵f(x)在(-∞,0)上為減函數(shù);
由f[x(x-3)] ≤f(-4)得
∴原不等式的解集為:
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省杭州市七校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040104174106084083/SYS201404010418057327658047_ST.files/image002.png">,
(1)求;
(2)若,且是的真子集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆遼寧朝陽高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080512213268898492/SYS201308051222069045733946_ST.files/image002.png">,部分對(duì)應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。
0 |
|||||
下列關(guān)于函數(shù)的命題:
①函數(shù)在上是減函數(shù);②如果當(dāng)時(shí),最大值是,那么的最大值為;③函數(shù)有個(gè)零點(diǎn),則;④已知是的一個(gè)單調(diào)遞減區(qū)間,則的最大值為。
其中真命題的個(gè)數(shù)是( )
A、4個(gè) B、3個(gè) C、2個(gè) D、1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省?谑懈呷呖颊{(diào)研考試?yán)砜茢?shù)學(xué) 題型:選擇題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052323564548436139/SYS201205232357391406841349_ST.files/image002.png">,且,為的導(dǎo)函數(shù),函數(shù)的圖象如圖所示.若正數(shù),滿足,則的取值范圍是
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com