【題目】在直角坐標系xOy 中,已知圓C的參數(shù)方程為 (φ為參數(shù)).以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求圓的極坐標方程;
(2)直線l的極坐方程是 ,射線OM:θ= 與圓的交點為O,P,與直線l的交點為Q,求線段PQ的長.

【答案】
(1)解:圓C的參數(shù)方程為 (φ為參數(shù)).

消去參數(shù)可得:(x﹣1)2+y2=1.

把x=ρcosθ,y=ρsinθ代入化簡得此圓的極坐標方程為:ρ=2cosθ


(2)解:如圖所示,直線l的極坐方程是 ,

射線OM:θ=

可得普通方程:直線l:y+ x=3 ,射線OM:y= x.

聯(lián)立 ,解得x= ,y= ,即Q( ).

聯(lián)立 ,解得

∴P( , ).

∴|PQ|= =2.

∴線段PQ的長為2


【解析】(1)圓C的參數(shù)方程消去參數(shù)能求出圓的極坐標方程,把x=ρcosθ,y=ρsinθ代入化簡能求出此圓的極坐標方程.(II)求出直線l:y+ x=3 ,射線OM:y= x.聯(lián)立 ,得Q( ),聯(lián)立 ,得P( , ),由此能求出線段PQ的長.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知A(0,0),B(1,0),C(2,1),D(0,3),將四邊形ABCDy軸旋轉一周,求所得旋轉體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某食品的保鮮時間t(單位:小時與儲藏溫度x(單位:℃)滿足函數(shù)關系t=且該食品在4℃的保鮮時間是16小時。已知甲在某日上午10時購買了該食品,并將其遺放在室外,且此日的室外溫度隨時間變化如圖所示。給出以下四個結論:

①該食品在6℃的保鮮時間是8小時;

②當x∈[-6,6]時,該食品的保鮮時間t隨著x增大而逐漸減少;

到了此日13時,甲所購買的食品還在保鮮時間內;

④到了此日14時,甲所購買的食品已然過了保鮮時間。

其中,所有正確結論的序號是__________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設y=f(x)是二次函數(shù),方程f(x)=0有兩個相等的實根,且f′(x)=2x+2.
(1)求y=f(x)的表達式;
(2)求y=f(x)的圖象與兩坐標軸所圍成封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,設p:實數(shù)x滿足x2﹣4ax+3a2<0,q:實數(shù)x滿足(x﹣3)2<1.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程 = x+
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)第2題求出的回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過點,且函數(shù)= 是偶函數(shù)

(1)的解析式;

(2)已知,求函數(shù)的最大值和最小值

(3)函數(shù)的圖象上是否存在這樣的點,其橫坐標是正整數(shù),縱坐標是一個完全平方數(shù)?如果存在,求出這樣的點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在下列四個正方體中,為正方體的兩個頂點,為所在棱的中點,則在這四個正方體中,直接與平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P ABCD中,ABCD,ABAD,CD2AB,平面PAD⊥底面ABCD,PAADEF分別為CDPC的中點.

求證:(1) BE∥平面PAD;

(2) 平面BEF⊥平面PCD.

查看答案和解析>>

同步練習冊答案