已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.

( 1 ) 證明:數(shù)列}是等比數(shù)列;

(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;

(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

 

【答案】

(1)根據(jù)遞推關(guān)系分析可知,兩邊取對(duì)數(shù)來(lái)得到證明。

(2)

(3),并根據(jù)上面的結(jié)論來(lái)得到證明

【解析】

試題分析:(1)證明:由已知

 兩邊取對(duì)數(shù)得,即

是公比為2的等比數(shù)列。

(2)解:由(1)知

=

(3

 

考點(diǎn):數(shù)列的求和

點(diǎn)評(píng):主要是考查了數(shù)列的求和的運(yùn)用,以及等比數(shù)列的定義的運(yùn)用,屬于難度試題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函f(x)的圖象關(guān)于點(diǎn)(-
3
4
,0
)對(duì)稱(chēng),且滿足f(x)=-f(x+
3
2
),f(0)=2,f(1)=-1,則f(1)+f(2)+f(3)+…+f(2009)的值是(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函f(x)=x2-8lnx,g(x)=-x2+14x
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)與g(x)在區(qū)間(a,a+1)上均為增函數(shù),求a的取值范圍;
(3)若方程f(x)=g(x)+m有唯一解,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函f(x)=x3+ax2+bx+5,若x=
23
,y=f(x) 有極值,且曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為3.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函數(shù)y=f(x)-m有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函致f (x)=x3+bx2+cx+d.
(I)當(dāng)b=0時(shí),證明:曲線y=f(x)與其在點(diǎn)(0,f(0))處的切線只有一個(gè)公共點(diǎn);
(Ⅱ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線為12x+y-13=0,記函數(shù)y=f(x)的兩個(gè)極值點(diǎn)為x1,x2,當(dāng)x1+x2=2時(shí),求f(x1)+f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)

(1)若函數(shù)在[l,+∞]上是增函數(shù),求實(shí)數(shù)的取值范圍。

(2)若=一的極值點(diǎn),求在[l,]上的最大值:

(3)在(2)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)g()=b的圖像與函的圖像恰有3個(gè)交點(diǎn),若存在,求出實(shí)數(shù)b的取值范圍:若不存在,試說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案