(Ⅰ)求證:平面ADE⊥平面ABE;
(Ⅱ)求點(diǎn)C到平面ADE的距離.
答案:解法1:取BE的中點(diǎn)O,連OC.
∵BC=CE,∴OC⊥BE.又AB⊥平面BCE.
以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系O-xyz如圖,
則由已知條件有
C(1,0,0),B(0,,0),E(0,,0)D(1,0,1),A(0,,2)設(shè)平面ADE的法向量為n=(a,b,c),
則由n·=(a,b,c)·(0,,2)=b+2c=0.
及n·=(a,b,c)·(-1,,1)=-a+b+c=0.
可取n=(0,1)
又AB⊥平面BCE.∴AB⊥OC.OC⊥平面ABE
∴平面ABE的法向量可取為m=(1,0,0).
∵n·m=(0,1)·(1,0,0)=0,
∴n⊥m ∴平面ADE⊥平面ABE.
(Ⅱ)點(diǎn)C到平面ADE的距離為
解法2:取BE的中為O,AE的中心F,連OC、OF、DF,
則BA∵AB⊥平面BCE,CD⊥平面BCE,AB=2CD
∴CDBA,OFCD∴OC//FD
∵BC=CE,∴OC⊥BE.又AB⊥平面BCE.∴OC⊥平面ABE.∴FD⊥平面ABE.
從而平面ADE⊥平面ABE.
(Ⅱ)∵CDBA,延長(zhǎng)AD,BC交于T則C為BT的中點(diǎn).
點(diǎn)C到平面ADE的距離等于點(diǎn)B到平同ADE的距離.過(guò)B作BH⊥AE,垂足為H.
由已知有AB⊥BE.BE=2,AB=2,∴BH=,從而點(diǎn)C到平面ADE的距離為.
或OC//FD,點(diǎn)C到平面ADE的距離等于點(diǎn)O到平面ADE的距離為.或取AB的中點(diǎn)M.易證CM//DA,點(diǎn)C到平面ADE的距離等于點(diǎn)M到平面ADE的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
GP |
GF |
π |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,
AB=BC=CE=2CD=2,∠BCE=1200,F(xiàn)為AE中點(diǎn)。
(Ⅰ) 求證:平面ADE⊥平面ABE ;
(Ⅱ) 求二面角A—EB—D的大小的余弦值;
(Ⅲ)求點(diǎn)F到平面BDE的距離。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com